These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Chaotic advection near a three-vortex collapse. Leoncini X; Kuznetsov L; Zaslavsky GM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036224. PubMed ID: 11308758 [TBL] [Abstract][Full Text] [Related]
25. Localization properties of groups of eigenstates in chaotic systems. Wisniacki DA; Borondo F; Vergini E; Benito RM Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 2):066220. PubMed ID: 11415219 [TBL] [Abstract][Full Text] [Related]
26. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
27. Remarks on nodal volume statistics for regular and chaotic wave functions in various dimensions. Gnutzmann S; Lois S Philos Trans A Math Phys Eng Sci; 2014 Jan; 372(2007):20120521. PubMed ID: 24344343 [TBL] [Abstract][Full Text] [Related]
28. Bohmian dynamics on subspaces using linearized quantum force. Rassolov VA; Garashchuk S J Chem Phys; 2004 Apr; 120(15):6815-25. PubMed ID: 15267580 [TBL] [Abstract][Full Text] [Related]
29. Chaos and quantum mechanics. Habib S; Bhattacharya T; Greenbaum B; Jacobs K; Shizume K; Sundaram B Ann N Y Acad Sci; 2005 Jun; 1045():308-32. PubMed ID: 15980320 [TBL] [Abstract][Full Text] [Related]
31. Nodal domains statistics: a criterion for quantum chaos. Blum G; Gnutzmann S; Smilansky U Phys Rev Lett; 2002 Mar; 88(11):114101. PubMed ID: 11909403 [TBL] [Abstract][Full Text] [Related]
32. A semi-numerical model for near-critical angle scattering. Fradkin LJ; Darmon M; Chatillon S; Calmon P J Acoust Soc Am; 2016 Jan; 139(1):141-50. PubMed ID: 26827012 [TBL] [Abstract][Full Text] [Related]
33. Classical dynamics and localization of resonances in the high-energy region of the hydrogen atom in crossed fields. Schweiner F; Main J; Cartarius H; Wunner G Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012915. PubMed ID: 25679690 [TBL] [Abstract][Full Text] [Related]
34. Jumps of adiabatic invariant at the separatrix of a degenerate saddle point. Artemyev AV; Neishtadt AI; Zelenyi LM Chaos; 2011 Dec; 21(4):043120. PubMed ID: 22225357 [TBL] [Abstract][Full Text] [Related]
35. Quantum-classical dynamics of scattering processes in adiabatic and diabatic representations. Puzari P; Sarkar B; Adhikari S J Chem Phys; 2004 Jul; 121(2):707-21. PubMed ID: 15260597 [TBL] [Abstract][Full Text] [Related]
37. Semiclassical theory for spatial density oscillations in fermionic systems. Roccia J; Brack M; Koch A Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011118. PubMed ID: 20365334 [TBL] [Abstract][Full Text] [Related]
38. Chaos and the continuum limit in the gravitational N-body problem. II. Nonintegrable potentials. Sideris IV; Kandrup HE Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066203. PubMed ID: 12188811 [TBL] [Abstract][Full Text] [Related]
39. Order and chaos in semiconductor microstructures. Lin WA; Delos JB; Jensen RV Chaos; 1993 Oct; 3(4):655-664. PubMed ID: 12780070 [TBL] [Abstract][Full Text] [Related]
40. de Broglie-Bohm analysis of a nonlinear membrane: From quantum to classical chaos. Santos Lima H; Paixão MMA; Tsallis C Chaos; 2024 Feb; 34(2):. PubMed ID: 38377286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]