These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
634 related articles for article (PubMed ID: 19392037)
1. Stochastic bifurcation in noise-driven lasers and Hopf oscillators. Wieczorek S Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036209. PubMed ID: 19392037 [TBL] [Abstract][Full Text] [Related]
2. Noise-induced Hopf-bifurcation-type sequence and transition to chaos in the lorenz equations. Gao JB; Tung WW; Rao N Phys Rev Lett; 2002 Dec; 89(25):254101. PubMed ID: 12484887 [TBL] [Abstract][Full Text] [Related]
3. Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators. Senthilkumar DV; Muruganandam P; Lakshmanan M; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066219. PubMed ID: 20866513 [TBL] [Abstract][Full Text] [Related]
4. Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle. Muratov CB; Vanden-Eijnden E Chaos; 2008 Mar; 18(1):015111. PubMed ID: 18377092 [TBL] [Abstract][Full Text] [Related]
5. Multirhythmicity generated by slow variable diffusion in a ring of relaxation oscillators and noise-induced abnormal interspike variability. Volkov EI; Volkov DV Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046232. PubMed ID: 12006001 [TBL] [Abstract][Full Text] [Related]
7. Measuring the universal synchronization properties of driven oscillators across a Hopf instability. Romanelli M; Wang L; Brunel M; Vallet M Opt Express; 2014 Apr; 22(7):7364-73. PubMed ID: 24718112 [TBL] [Abstract][Full Text] [Related]
8. Internal noise coherent resonance for mesoscopic chemical oscillations: a fundamental study. Hou Z; Xiao TJ; Xin H Chemphyschem; 2006 Jul; 7(7):1520-4. PubMed ID: 16729356 [TBL] [Abstract][Full Text] [Related]
9. Dynamics, bifurcations and chaos in coupled lasers. Lindberg AM; Fordell T; Valling S Philos Trans A Math Phys Eng Sci; 2008 Feb; 366(1864):427-35. PubMed ID: 17681913 [TBL] [Abstract][Full Text] [Related]
10. Stochastic bifurcations in a bistable Duffing-Van der Pol oscillator with colored noise. Xu Y; Gu R; Zhang H; Xu W; Duan J Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056215. PubMed ID: 21728638 [TBL] [Abstract][Full Text] [Related]
11. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators. Yu N; Kuske R; Li YX Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093 [TBL] [Abstract][Full Text] [Related]
12. Stochastic resonance and bifurcations in a harmonically driven tri-stable potential with colored noise. Zhang Y; Jin Y; Xu P Chaos; 2019 Feb; 29(2):023127. PubMed ID: 30823743 [TBL] [Abstract][Full Text] [Related]
13. Stochastic mixed-mode oscillations in a three-species predator-prey model. Sadhu S; Kuehn C Chaos; 2018 Mar; 28(3):033606. PubMed ID: 29604654 [TBL] [Abstract][Full Text] [Related]
14. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
15. Stochastic synchronization in globally coupled phase oscillators. Sakaguchi H Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056129. PubMed ID: 12513578 [TBL] [Abstract][Full Text] [Related]
16. The uncoupling limit of identical Hopf bifurcations with an application to perceptual bistability. Pérez-Cervera A; Ashwin P; Huguet G; M Seara T; Rankin J J Math Neurosci; 2019 Aug; 9(1):7. PubMed ID: 31385150 [TBL] [Abstract][Full Text] [Related]
17. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
18. Pitchfork and Hopf bifurcation thresholds in stochastic equations with delayed feedback. Gaudreault M; Lépine F; Viñals J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061920. PubMed ID: 20365203 [TBL] [Abstract][Full Text] [Related]
19. Strong and weak chaos in networks of semiconductor lasers with time-delayed couplings. Heiligenthal S; Jüngling T; D'Huys O; Arroyo-Almanza DA; Soriano MC; Fischer I; Kanter I; Kinzel W Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012902. PubMed ID: 23944533 [TBL] [Abstract][Full Text] [Related]
20. Clustering in globally coupled oscillators near a Hopf bifurcation: theory and experiments. Kori H; Kuramoto Y; Jain S; Kiss IZ; Hudson JL Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062906. PubMed ID: 25019850 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]