These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19392047)

  • 1. Stochastic transport of particles in straining flows.
    Swailes DC; Ammar Y; Reeks MW; Drossinos Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036305. PubMed ID: 19392047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stokes number effects in Lagrangian stochastic models of dispersed two-phase flows.
    Reynolds AM
    J Colloid Interface Sci; 2004 Jul; 275(1):328-35. PubMed ID: 15158418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct numerical simulation of a near-field particle-laden plane turbulent jet.
    Fan J; Luo K; Ha MY; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026303. PubMed ID: 15447584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.
    Chekmarev SF
    Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probability density function model equation for particle charging in a homogeneous dusty plasma.
    Pandya RV; Mashayek F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036405. PubMed ID: 11580452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer.
    Fan J; Luo K; Zheng Y; Jin H; Cen K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036309. PubMed ID: 14524892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Stokes number for the capture of inertial particles by recirculation cells in two-dimensional quasisteady flows.
    Verjus R; Angilella JR
    Phys Rev E; 2016 May; 93(5):053116. PubMed ID: 27300987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and dynamic probability-density-function descriptions of disperse turbulent two-phase flows.
    Minier JP; Profeta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053020. PubMed ID: 26651792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saltation of particles in turbulent channel flow.
    Ji C; Munjiza A; Avital E; Xu D; Williams J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052202. PubMed ID: 25353782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.
    Premnath KN; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers.
    Shotorban B; Balachandar S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056703. PubMed ID: 19518589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical model for collisions and recollisions of inertial particles in mixing flows.
    Gustavsson K; Mehlig B
    Eur Phys J E Soft Matter; 2016 May; 39(5):55. PubMed ID: 27225619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle stresses in dilute, polydisperse, two-way coupled turbulent flows.
    Richter DH; Garcia O; Astephen C
    Phys Rev E; 2016 Jan; 93(1):013111. PubMed ID: 26871159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chapman-Enskog expansion for multi-particle collision models.
    Ihle T
    Phys Chem Chem Phys; 2009 Nov; 11(42):9667-76. PubMed ID: 19851544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations.
    Khalil N; Garzó V
    J Chem Phys; 2014 Apr; 140(16):164901. PubMed ID: 24784304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple collisions in turbulent flows.
    Vosskuhle M; Lévêque E; Wilkinson M; Pumir A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063008. PubMed ID: 24483558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic Modeling of Swirling Binary Mixture Gas-Particle Flows Using a Second-Order-Moment Turbulence Model.
    Liu Y; Chen Z; Zhang Y; Zhou L
    ACS Omega; 2020 Dec; 5(49):31490-31501. PubMed ID: 33344800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrodynamic Modeling of Turbulence Modulation by Particles in a Swirling Gas-Particle Two-Phase Flow.
    Liu Y; Jiang L; Zhang Y
    ACS Omega; 2021 Apr; 6(15):10106-10118. PubMed ID: 34056165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.