These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 19392132)

  • 1. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101).
    He Y; Dulub O; Cheng H; Selloni A; Diebold U
    Phys Rev Lett; 2009 Mar; 102(10):106105. PubMed ID: 19392132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Sub)surface mobility of oxygen vacancies at the TiO2 anatase (101) surface.
    Scheiber P; Fidler M; Dulub O; Schmid M; Diebold U; Hou W; Aschauer U; Selloni A
    Phys Rev Lett; 2012 Sep; 109(13):136103. PubMed ID: 23030108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticorrelation between surface and subsurface point defects and the impact on the redox chemistry of TiO2(110).
    Yoon Y; Du Y; Garcia JC; Zhu Z; Wang ZT; Petrik NG; Kimmel GA; Dohnalek Z; Henderson MA; Rousseau R; Deskins NA; Lyubinetsky I
    Chemphyschem; 2015 Feb; 16(2):313-21. PubMed ID: 25359161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101).
    Setvín M; Aschauer U; Scheiber P; Li YF; Hou W; Schmid M; Selloni A; Diebold U
    Science; 2013 Aug; 341(6149):988-91. PubMed ID: 23990556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peroxide and superoxide states of adsorbed O(2) on anatase TiO(2) (101) with subsurface defects.
    Aschauer U; Chen J; Selloni A
    Phys Chem Chem Phys; 2010 Oct; 12(40):12956-60. PubMed ID: 20820549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations.
    Ortega Y; Hernández NC; Menéndez-Proupin E; Graciani J; Sanz JF
    Phys Chem Chem Phys; 2011 Jun; 13(23):11340-50. PubMed ID: 21566817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of external electric fields on oxygen vacancies at the anatase (101) surface.
    Selçuk S; Selloni A
    J Chem Phys; 2014 Aug; 141(8):084705. PubMed ID: 25173028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen vacancies versus fluorine at CeO2(111): a case of mistaken identity?
    Kullgren J; Wolf MJ; Castleton CW; Mitev P; Briels WJ; Hermansson K
    Phys Rev Lett; 2014 Apr; 112(15):156102. PubMed ID: 24785057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations.
    Murgida GE; Ganduglia-Pirovano MV
    Phys Rev Lett; 2013 Jun; 110(24):246101. PubMed ID: 25165940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals.
    Raghunath P; Huang WF; Lin MC
    J Chem Phys; 2013 Apr; 138(15):154705. PubMed ID: 23614434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen interaction with the anatase TiO2(101) surface.
    Aschauer U; Selloni A
    Phys Chem Chem Phys; 2012 Dec; 14(48):16595-602. PubMed ID: 22930163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced step edges on rutile TiO2(110) as competing defects to oxygen vacancies on the terraces and reactive sites for ethanol dissociation.
    Martinez U; Hansen JØ; Lira E; Kristoffersen HH; Huo P; Bechstein R; Lægsgaard E; Besenbacher F; Hammer B; Wendt S
    Phys Rev Lett; 2012 Oct; 109(15):155501. PubMed ID: 23102329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge trapping at the step edges of TiO(2) anatase (101).
    Setvin M; Hao X; Daniel B; Pavelec J; Novotny Z; Parkinson GS; Schmid M; Kresse G; Franchini C; Diebold U
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4714-6. PubMed ID: 24677419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of nonmetal impurities at the anatase TiO2(001)-(1 × 4) surface.
    Lee JH; Hevia DF; Selloni A
    Phys Rev Lett; 2013 Jan; 110(1):016101. PubMed ID: 23383811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bonding of gold nanoclusters to oxygen vacancies on rutile TiO2(110).
    Wahlström E; Lopez N; Schaub R; Thostrup P; Rønnau A; Africh C; Laegsgaard E; Nørskov JK; Besenbacher F
    Phys Rev Lett; 2003 Jan; 90(2):026101. PubMed ID: 12570557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small Au and Pt clusters at the anatase TiO2(101) surface: behavior at terraces, steps, and surface oxygen vacancies.
    Gong XQ; Selloni A; Dulub O; Jacobson P; Diebold U
    J Am Chem Soc; 2008 Jan; 130(1):370-81. PubMed ID: 18069837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation and growth of Pt nanoparticles on reduced and oxidized rutile TiO₂ (110).
    Rieboldt F; Vilhelmsen LB; Koust S; Lauritsen JV; Helveg S; Lammich L; Besenbacher F; Hammer B; Wendt S
    J Chem Phys; 2014 Dec; 141(21):214702. PubMed ID: 25481156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.