These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19392139)

  • 1. Gauge-field rotation of an electrically polarized bose condensate by a radial magnetic field.
    Sonin EB
    Phys Rev Lett; 2009 Mar; 102(10):106407. PubMed ID: 19392139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bose-Einstein condensation and indirect excitons: a review.
    Combescot M; Combescot R; Dubin F
    Rep Prog Phys; 2017 Jun; 80(6):066501. PubMed ID: 28355164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Angular distribution of photoluminescence as a probe of bose condensation of trapped excitons.
    Keeling J; Levitov LS; Littlewood PB
    Phys Rev Lett; 2004 Apr; 92(17):176402. PubMed ID: 15169175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation of half-quantum vortices in an exciton-polariton condensate.
    Lagoudakis KG; Ostatnický T; Kavokin AV; Rubo YG; André R; Deveaud-Plédran B
    Science; 2009 Nov; 326(5955):974-6. PubMed ID: 19965506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Berry phase effect on the exciton transport and on the exciton Bose-Einstein condensate.
    Yao W; Niu Q
    Phys Rev Lett; 2008 Sep; 101(10):106401. PubMed ID: 18851231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarized nonequilibrium Bose-Einstein condensates of spinor exciton polaritons in a magnetic field.
    Larionov AV; Kulakovskii VD; Höfling S; Schneider C; Worschech L; Forchel A
    Phys Rev Lett; 2010 Dec; 105(25):256401. PubMed ID: 21231604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of vortices and vortex stripes in a dipolar condensate.
    Klaus L; Bland T; Poli E; Politi C; Lamporesi G; Casotti E; Bisset RN; Mark MJ; Ferlaino F
    Nat Phys; 2022; 18(12):1453-1458. PubMed ID: 36506337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous coherence in a cold exciton gas.
    High AA; Leonard JR; Hammack AT; Fogler MM; Butov LV; Kavokin AV; Campman KL; Gossard AC
    Nature; 2012 Mar; 483(7391):584-8. PubMed ID: 22437498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin polarized semimagnetic exciton-polariton condensate in magnetic field.
    Król M; Mirek R; Lekenta K; Rousset JG; Stephan D; Nawrocki M; Matuszewski M; Szczytko J; Pacuski W; Piętka B
    Sci Rep; 2018 Apr; 8(1):6694. PubMed ID: 29703917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light Controlled Optical Aharonov-Bohm Oscillations in a Single Quantum Ring.
    Kim H; Park S; Okuyama R; Kyhm K; Eto M; Taylor RA; Nogues G; Dang LS; Potemski M; Je K; Kim J; Kyhm J; Song J
    Nano Lett; 2018 Oct; 18(10):6188-6194. PubMed ID: 30223652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of Bose-Einstein condensates of excitons in a bulk semiconductor.
    Morita Y; Yoshioka K; Kuwata-Gonokami M
    Nat Commun; 2022 Sep; 13(1):5388. PubMed ID: 36104375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macroscopically ordered state in an exciton system.
    Butov LV; Gossard AC; Chemla DS
    Nature; 2002 Aug; 418(6899):751-4. PubMed ID: 12181559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers.
    Wang Z; Rhodes DA; Watanabe K; Taniguchi T; Hone JC; Shan J; Mak KF
    Nature; 2019 Oct; 574(7776):76-80. PubMed ID: 31578483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crossover between strongly coupled and weakly coupled exciton superfluids.
    Liu X; Li JIA; Watanabe K; Taniguchi T; Hone J; Halperin BI; Kim P; Dean CR
    Science; 2022 Jan; 375(6577):205-209. PubMed ID: 35025642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vortices, tunneling, and deconfinement in bilayer quantum Hall excitonic superfluid.
    Wang Z
    Phys Rev Lett; 2005 May; 94(17):176804. PubMed ID: 15904326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possibility of Exciton Bose-Einstein Condensation in CdSe Nanoplatelets.
    Baghdasaryan DA; Harutyunyan VA; Kazaryan EM; Sarkisyan HA; Petrosyan LS; Shahbazyan TV
    Nanomaterials (Basel); 2023 Oct; 13(19):. PubMed ID: 37836375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Bose-Einstein condensation of semiconductor excitons: the biexciton polarization effect.
    Hägele D; Pfalz S; Oestreich M
    Phys Rev Lett; 2009 Oct; 103(14):146402. PubMed ID: 19905586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Gray" BCS condensate of excitons and internal Josephson effect.
    Combescot R; Combescot M
    Phys Rev Lett; 2012 Jul; 109(2):026401. PubMed ID: 23030185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Role of Spin-Flip Collisions in a Dark-Exciton Condensate.
    Misra S; Stern M; Umansky V; Bar-Joseph I
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2203531119. PubMed ID: 35921437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.