These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 19392157)
1. Excitation of dark plasmons in metal nanoparticles by a localized emitter. Liu M; Lee TW; Gray SK; Guyot-Sionnest P; Pelton M Phys Rev Lett; 2009 Mar; 102(10):107401. PubMed ID: 19392157 [TBL] [Abstract][Full Text] [Related]
2. Direct optical excitation of dark plasmons for hot electron generation. Mueller NS; Vieira BGM; Höing D; Schulz F; Barros EB; Lange H; Reich S Faraday Discuss; 2019 May; 214(0):159-173. PubMed ID: 30912539 [TBL] [Abstract][Full Text] [Related]
3. Energy transport in metal nanoparticle chains via sub-radiant plasmon modes. Willingham B; Link S Opt Express; 2011 Mar; 19(7):6450-61. PubMed ID: 21451673 [TBL] [Abstract][Full Text] [Related]
4. Dark plasmon modes for efficient hot electron generation in multilayers of gold nanoparticles. Hoeing D; Schulz F; Mueller NS; Reich S; Lange H J Chem Phys; 2020 Feb; 152(6):064710. PubMed ID: 32061229 [TBL] [Abstract][Full Text] [Related]
5. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668 [TBL] [Abstract][Full Text] [Related]
6. Near field of strongly coupled plasmons: uncovering dark modes. Schertz F; Schmelzeisen M; Mohammadi R; Kreiter M; Elmers HJ; Schönhense G Nano Lett; 2012 Apr; 12(4):1885-90. PubMed ID: 22429148 [TBL] [Abstract][Full Text] [Related]
7. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains. Mayer M; Potapov PL; Pohl D; Steiner AM; Schultz J; Rellinghaus B; Lubk A; König TAF; Fery A Nano Lett; 2019 Jun; 19(6):3854-3862. PubMed ID: 31117756 [TBL] [Abstract][Full Text] [Related]
8. Excitation of dark multipolar plasmonic resonances at terahertz frequencies. Chen L; Wei Y; Zang X; Zhu Y; Zhuang S Sci Rep; 2016 Feb; 6():22027. PubMed ID: 26903382 [TBL] [Abstract][Full Text] [Related]
9. Strong Coupling between Dark Plasmon and Anapole Modes. Du K; Li P; Gao K; Wang H; Yang Z; Zhang W; Xiao F; Chua SJ; Mei T J Phys Chem Lett; 2019 Aug; 10(16):4699-4705. PubMed ID: 31364854 [TBL] [Abstract][Full Text] [Related]
10. Retardation effects on the dispersion and propagation of plasmons in metallic nanoparticle chains. Downing CA; Mariani E; Weick G J Phys Condens Matter; 2018 Jan; 30(2):025301. PubMed ID: 29176053 [TBL] [Abstract][Full Text] [Related]
11. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media. Simsek E Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000 [TBL] [Abstract][Full Text] [Related]
12. Multidimensional Hybridization of Dark Surface Plasmons. Yankovich AB; Verre R; Olsén E; Persson AEO; Trinh V; Dovner G; Käll M; Olsson E ACS Nano; 2017 Apr; 11(4):4265-4274. PubMed ID: 28350962 [TBL] [Abstract][Full Text] [Related]
13. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: the plasmonic Dicke effect. Pustovit VN; Shahbazyan TV Phys Rev Lett; 2009 Feb; 102(7):077401. PubMed ID: 19257713 [TBL] [Abstract][Full Text] [Related]
14. Selective excitation of bright and dark plasmonic resonances of single gold nanorods. Demichel O; Petit M; Colas des Francs G; Bouhelier A; Hertz E; Billard F; de Fornel F; Cluzel B Opt Express; 2014 Jun; 22(12):15088-96. PubMed ID: 24977601 [TBL] [Abstract][Full Text] [Related]
15. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430 [TBL] [Abstract][Full Text] [Related]
16. Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams. Sancho-Parramon J; Bosch S ACS Nano; 2012 Sep; 6(9):8415-23. PubMed ID: 22920735 [TBL] [Abstract][Full Text] [Related]
17. Efficient single photon emission and collection based on excitation of gap surface plasmons. Lian H; Gu Y; Ren J; Zhang F; Wang L; Gong Q Phys Rev Lett; 2015 May; 114(19):193002. PubMed ID: 26024170 [TBL] [Abstract][Full Text] [Related]
18. Artificial TE-mode surface waves at metal surfaces mimicking surface plasmons. Sun Z; Zuo X; Guan T; Chen W Opt Express; 2014 Feb; 22(4):4714-22. PubMed ID: 24663790 [TBL] [Abstract][Full Text] [Related]
19. Anticrossing double Fano resonances generated in metallic/dielectric hybrid nanostructures using nonradiative anapole modes for enhanced nonlinear optical effects. Zhai WC; Qiao TZ; Cai DJ; Wang WJ; Chen JD; Chen ZH; Liu SD Opt Express; 2016 Nov; 24(24):27858-27869. PubMed ID: 27906354 [TBL] [Abstract][Full Text] [Related]
20. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering. Cade NI; Ritman-Meer T; Kwaka K; Richards D Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]