These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 19392250)
1. Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Vinogradova OI; Koynov K; Best A; Feuillebois F Phys Rev Lett; 2009 Mar; 102(11):118302. PubMed ID: 19392250 [TBL] [Abstract][Full Text] [Related]
2. Flow profile near a wall measured by double-focus fluorescence cross-correlation. Lumma D; Best A; Gansen A; Feuillebois F; Rädler JO; Vinogradova OI Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056313. PubMed ID: 12786278 [TBL] [Abstract][Full Text] [Related]
3. Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: quantitative data analysis. Schmitz R; Yordanov S; Butt HJ; Koynov K; Dünweg B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066306. PubMed ID: 22304189 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Kim D; Darve E Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 1):051203. PubMed ID: 16802924 [TBL] [Abstract][Full Text] [Related]
5. Nanofluidics in the Debye layer at hydrophilic and hydrophobic surfaces. Bouzigues CI; Tabeling P; Bocquet L Phys Rev Lett; 2008 Sep; 101(11):114503. PubMed ID: 18851287 [TBL] [Abstract][Full Text] [Related]
6. Water slippage versus contact angle: a quasiuniversal relationship. Huang DM; Sendner C; Horinek D; Netz RR; Bocquet L Phys Rev Lett; 2008 Nov; 101(22):226101. PubMed ID: 19113490 [TBL] [Abstract][Full Text] [Related]
7. Boundary slip and wetting properties of interfaces: correlation of the contact angle with the slip length. Voronov RS; Papavassiliou DV; Lee LL J Chem Phys; 2006 May; 124(20):204701. PubMed ID: 16774358 [TBL] [Abstract][Full Text] [Related]
8. Boundary slip study on hydrophilic, hydrophobic, and superhydrophobic surfaces with dynamic atomic force microscopy. Bhushan B; Wang Y; Maali A Langmuir; 2009 Jul; 25(14):8117-21. PubMed ID: 19402684 [TBL] [Abstract][Full Text] [Related]
9. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip. Park HM; Kim TW Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287 [TBL] [Abstract][Full Text] [Related]
10. Amplification of electro-osmotic flows by wall slippage: direct measurements on OTS-surfaces. Audry MC; Piednoir A; Joseph P; Charlaix E Faraday Discuss; 2010; 146():113-24; discussion 195-215, 395-403. PubMed ID: 21043417 [TBL] [Abstract][Full Text] [Related]
11. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Sendner C; Horinek D; Bocquet L; Netz RR Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481 [TBL] [Abstract][Full Text] [Related]
12. Wall slip, shear banding, and instability in the flow of a triblock copolymer micellar solution. Manneville S; Colin A; Waton G; Schosseler F Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 1):061502. PubMed ID: 17677264 [TBL] [Abstract][Full Text] [Related]
13. Reliable measurements of interfacial slip by colloid probe atomic force microscopy. III. Shear-rate-dependent slip. Zhu L; Neto C; Attard P Langmuir; 2012 Feb; 28(7):3465-73. PubMed ID: 22276815 [TBL] [Abstract][Full Text] [Related]
14. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
16. Velocimetry in microchannels using photobleached molecular tracers: a tool to discriminate solvent velocity in flows of suspensions. Schembri F; Bodiguel H; Colin A Soft Matter; 2015 Jan; 11(1):169-78. PubMed ID: 25376855 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels. Park HM; Kim TW Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604 [TBL] [Abstract][Full Text] [Related]
18. Uncovering the Contribution of Microchannel Deformation to Impedance-Based Flow Rate Measurements. Niu P; Nablo BJ; Bhadriraju K; Reyes DR Anal Chem; 2017 Nov; 89(21):11372-11377. PubMed ID: 28960064 [TBL] [Abstract][Full Text] [Related]
19. Direct measurement of the apparent slip length. Joseph P; Tabeling P Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):035303. PubMed ID: 15903486 [TBL] [Abstract][Full Text] [Related]
20. Electro-osmotic flows in a microchannel with patterned hydrodynamic slip walls. Zhao C; Yang C Electrophoresis; 2012 Mar; 33(6):899-980. PubMed ID: 22528409 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]