These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19392262)

  • 1. Micromagic clock: microwave clock based on atoms in an engineered optical lattice.
    Beloy K; Derevianko A; Dzuba VA; Flambaum VV
    Phys Rev Lett; 2009 Mar; 102(12):120801. PubMed ID: 19392262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Doubly magic" conditions in magic-wavelength trapping of ultracold alkali-metal atoms.
    Derevianko A
    Phys Rev Lett; 2010 Jul; 105(3):033002. PubMed ID: 20867762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magic frequencies for cesium primary-frequency standard.
    Flambaum VV; Dzuba VA; Derevianko A
    Phys Rev Lett; 2008 Nov; 101(22):220801. PubMed ID: 19113470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency shifts in an optical lattice clock due to magnetic-dipole and electric-quadrupole transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG; Oates CW
    Phys Rev Lett; 2008 Nov; 101(19):193601. PubMed ID: 19113267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of Magic Wavelengths for the ^{40}Ca^{+} Clock Transition.
    Liu PL; Huang Y; Bian W; Shao H; Guan H; Tang YB; Li CB; Mitroy J; Gao KL
    Phys Rev Lett; 2015 Jun; 114(22):223001. PubMed ID: 26196619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier thermometry of cold ytterbium atoms in an optical lattice clock.
    Han C; Zhou M; Zhang X; Gao Q; Xu Y; Li S; Zhang S; Xu X
    Sci Rep; 2018 May; 8(1):7927. PubMed ID: 29784962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical lattice polarization effects on hyperpolarizability of atomic clock transitions.
    Taichenachev AV; Yudin VI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2006 Oct; 97(17):173601. PubMed ID: 17155474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new trapped ion atomic clock based on 201Hg+.
    Burt EA; Taghavi-Larigani S; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):629-35. PubMed ID: 20211781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping of neutral mercury atoms and prospects for optical lattice clocks.
    Hachisu H; Miyagishi K; Porsev SG; Derevianko A; Ovsiannikov VD; Pal'chikov VG; Takamoto M; Katori H
    Phys Rev Lett; 2008 Feb; 100(5):053001. PubMed ID: 18352368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rydberg spectroscopy in an optical lattice: blackbody thermometry for atomic clocks.
    Ovsiannikov VD; Derevianko A; Gibble K
    Phys Rev Lett; 2011 Aug; 107(9):093003. PubMed ID: 21929236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic field-induced spectroscopy of forbidden optical transitions with application to lattice-based optical atomic clocks.
    Taichenachev AV; Yudin VI; Oates CW; Hoyt CW; Barber ZW; Hollberg L
    Phys Rev Lett; 2006 Mar; 96(8):083001. PubMed ID: 16606175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.
    Akamatsu D; Kobayashi T; Hisai Y; Tanabe T; Hosaka K; Yasuda M; Hong FL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):1069-1075. PubMed ID: 29856725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doubly Magic Optical Trapping for Cs Atom Hyperfine Clock Transitions.
    Carr AW; Saffman M
    Phys Rev Lett; 2016 Oct; 117(15):150801. PubMed ID: 27768352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice.
    Barber ZW; Hoyt CW; Oates CW; Hollberg L; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2006 Mar; 96(8):083002. PubMed ID: 16606176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Lattice Clocks with Weakly Bound Molecules.
    Borkowski M
    Phys Rev Lett; 2018 Feb; 120(8):083202. PubMed ID: 29542992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active Faraday optical frequency standard.
    Zhuang W; Chen J
    Opt Lett; 2014 Nov; 39(21):6339-42. PubMed ID: 25361349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of an Inner-Shell Orbital Clock Transition in Neutral Ytterbium Atoms.
    Ishiyama T; Ono K; Takano T; Sunaga A; Takahashi Y
    Phys Rev Lett; 2023 Apr; 130(15):153402. PubMed ID: 37115891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic Spin-Orbit Coupling in an Optical Lattice Clock.
    Wall ML; Koller AP; Li S; Zhang X; Cooper NR; Ye J; Rey AM
    Phys Rev Lett; 2016 Jan; 116(3):035301. PubMed ID: 26849600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential light-shift cancellation in a magnetic-field-insensitive transition of 87rb.
    Chicireanu R; Nelson KD; Olmschenk S; Lundblad N; Derevianko A; Porto JV
    Phys Rev Lett; 2011 Feb; 106(6):063002. PubMed ID: 21405465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.