BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19392307)

  • 1. Softening of the radial breathing mode in metallic carbon nanotubes.
    Farhat H; Sasaki K; Kalbac M; Hofmann M; Saito R; Dresselhaus MS; Kong J
    Phys Rev Lett; 2009 Mar; 102(12):126804. PubMed ID: 19392307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phonon softening in individual metallic carbon nanotubes due to the Kohn Anomaly.
    Farhat H; Son H; Samsonidze GG; Reich S; Dresselhaus MS; Kong J
    Phys Rev Lett; 2007 Oct; 99(14):145506. PubMed ID: 17930687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects.
    Fantini C; Jorio A; Souza M; Strano MS; Dresselhaus MS; Pimenta MA
    Phys Rev Lett; 2004 Oct; 93(14):147406. PubMed ID: 15524844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter.
    Brar VW; Samsonidze GG; Santos AP; Chou SG; Chattopadhyay D; Kim SN; Papadimitrakopoulos F; Zheng M; Jagota A; Onoa GB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus G; Dresselhaus MS
    J Nanosci Nanotechnol; 2005 Feb; 5(2):209-28. PubMed ID: 15853139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge transfer at junctions of a single layer of graphene and a metallic single walled carbon nanotube.
    Paulus GL; Wang QH; Ulissi ZW; McNicholas TP; Vijayaraghavan A; Shih CJ; Jin Z; Strano MS
    Small; 2013 Jun; 9(11):1954-63. PubMed ID: 23281165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes for biomedical imaging: the recent advances.
    Gong H; Peng R; Liu Z
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1951-63. PubMed ID: 24184130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonant Raman spectroscopy of individual strained single-wall carbon nanotubes.
    Duan X; Son H; Gao B; Zhang J; Wu T; Samsonidze GG; Dresselhaus MS; Liu Z; Kong J
    Nano Lett; 2007 Jul; 7(7):2116-21. PubMed ID: 17567178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Raman scattering of single-wall carbon nanotubes produced using Y/Ni catalyst].
    Wang YF; Liu HR; Xu XX; Shao Y; Cao XW; Hu SF; Liu YY; Lan GX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):580-3. PubMed ID: 12938370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials.
    Dillon AC; Yudasaka M; Dresselhaus MS
    J Nanosci Nanotechnol; 2004 Sep; 4(7):691-703. PubMed ID: 15570946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kohn anomaly and electron-phonon interaction at the K-derived point of the brillouin zone of metallic nanotubes.
    Rafailov PM; Maultzsch J; Thomsen C; Dettlaff-Weglikowska U; Roth S
    Nano Lett; 2009 Sep; 9(9):3343-8. PubMed ID: 19694489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial-tangential mode of single-wall carbon nanotubes manifested by Landau regulation: reinterpretation of low- and intermediate-frequency Raman signals.
    Hembram KPSS; Kim JG; Lee SG; Park J; Lee JK
    Sci Rep; 2023 Mar; 13(1):5012. PubMed ID: 36973343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical charging of individual single-walled carbon nanotubes.
    Kalbac M; Farhat H; Kavan L; Kong J; Sasaki K; Saito R; Dresselhaus MS
    ACS Nano; 2009 Aug; 3(8):2320-8. PubMed ID: 19645423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ Raman study on single- and double-walled carbon nanotubes as a function of lithium insertion.
    Kim YA; Kojima M; Muramatsu H; Umemoto S; Watanabe T; Yoshida K; Sato K; Ikeda T; Hayashi T; Endo M; Terrones M; Dresselhaus MS
    Small; 2006 May; 2(5):667-76. PubMed ID: 17193105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman doping profiles of polyelectrolyte SWNTs in solution.
    Dragin F; Pénicaud A; Iurlo M; Marcaccio M; Paolucci F; Anglaret E; Martel R
    ACS Nano; 2011 Dec; 5(12):9892-7. PubMed ID: 22092255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ raman measurements of suspended individual single-walled carbon nanotubes under strain.
    Lee SW; Jeong GH; Campbell EE
    Nano Lett; 2007 Sep; 7(9):2590-5. PubMed ID: 17718583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag nanoparticles coated SWCNT with surface enhanced Raman scattering (SERS) signals.
    Chen Z; Liu R; Wang Y; Zhu H; Sun Z; Zuo T; Chang X; Zhao F; Xing G; Yuan H; Xiang J; Gao X
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8538-43. PubMed ID: 21121363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of the Raman spectra of single-walled carbon nanotube bundles under electrochemical potential control.
    Takeda N; Murakoshi K
    Anal Bioanal Chem; 2007 May; 388(1):103-8. PubMed ID: 17200858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doping and phonon renormalization in carbon nanotubes.
    Tsang JC; Freitag M; Perebeinos V; Liu J; Avouris P
    Nat Nanotechnol; 2007 Nov; 2(11):725-30. PubMed ID: 18654413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential electrochemical unzipping of single-walled carbon nanotubes to graphene ribbons revealed by in situ Raman spectroscopy and imaging.
    John R; Shinde DB; Liu L; Ding F; Xu Z; Vijayan C; Pillai VK; Pradeep T
    ACS Nano; 2014 Jan; 8(1):234-42. PubMed ID: 24308315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.