These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19392354)

  • 1. Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial.
    Mocella V; Cabrini S; Chang AS; Dardano P; Moretti L; Rendina I; Olynick D; Harteneck B; Dhuey S
    Phys Rev Lett; 2009 Apr; 102(13):133902. PubMed ID: 19392354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An extraordinary directive radiation based on optical antimatter at near infrared.
    Mocella V; Dardano P; Rendina I; Cabrini S
    Opt Express; 2010 Nov; 18(24):25068-74. PubMed ID: 21164852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice.
    Li Z; Hattori HT
    Appl Opt; 2013 Feb; 52(4):854-61. PubMed ID: 23385928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focusing light in a bianisotropic slab with negatively refracting materials.
    Liu Y; Guenneau S; Gralak B; Ramakrishna SA
    J Phys Condens Matter; 2013 Apr; 25(13):135901. PubMed ID: 23470636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-angle collimation of incident light in μ-near-zero metamaterials.
    Fedorov VY; Nakajima T
    Opt Express; 2013 Nov; 21(23):27789-95. PubMed ID: 24514294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directive emission of red conjugated polymer embedded within zero index metamaterials.
    Cao T; Zou Y; Adawi AM; Cryan MJ
    Opt Express; 2014 Sep; 22(19):22699-706. PubMed ID: 25321739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-collimation and focusing effects in zero-average index metamaterials.
    Pollès R; Centeno E; Arlandis J; Moreau A
    Opt Express; 2011 Mar; 19(7):6149-54. PubMed ID: 21451639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental demonstration of near-infrared epsilon-near-zero multilayer metamaterial slabs.
    Yang X; Hu C; Deng H; Rosenmann D; Czaplewski DA; Gao J
    Opt Express; 2013 Oct; 21(20):23631-9. PubMed ID: 24104275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise displacement measurement in single-beam interferometry employing photonic metamaterial with effective zero-index.
    Dong G; Li Z; Zhou J; Qiao P; Yang X; Meng X
    Opt Express; 2017 Dec; 25(25):31509-31515. PubMed ID: 29245825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous omnidirectional zero-n¯ and zero-ϕeff non-Bragg gaps in metamaterial-polaritonic photonic superlattices.
    Moncada-Villa E; Mejía-Salazar JR; Granada JC
    Opt Lett; 2015 May; 40(10):2345-8. PubMed ID: 26393735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical nanostructures in 2D for wide-diameter and broadband beam collimation.
    Clark J; Anguita JV; Chen Y; Silva SR
    Sci Rep; 2016 Jan; 6():18767. PubMed ID: 26732851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin Hall effect of transmitted light in a three-layer waveguide with lossy epsilon-near-zero metamaterial.
    Tang T; Li J; Zhang Y; Li C; Luo L
    Opt Express; 2016 Nov; 24(24):28113-28121. PubMed ID: 27906376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials.
    Ginzburg P; Rodríguez Fortuño FJ; Wurtz GA; Dickson W; Murphy A; Morgan F; Pollard RJ; Iorsh I; Atrashchenko A; Belov PA; Kivshar YS; Nevet A; Ankonina G; Orenstein M; Zayats AV
    Opt Express; 2013 Jun; 21(12):14907-17. PubMed ID: 23787679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.
    Tsai YJ; Larouche S; Tyler T; Lipworth G; Jokerst NM; Smith DR
    Opt Express; 2011 Nov; 19(24):24411-23. PubMed ID: 22109468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Giant resonance absorption in ultra-thin metamaterial periodic structures.
    Yanai A; Orenstein M; Levy U
    Opt Express; 2012 Feb; 20(4):3693-702. PubMed ID: 22418127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-inspired spatially variant photonic crystals for self-collimation and beam-steering applications in the near-infrared spectrum.
    Gnawali R; Volk A; Agha I; Payne TE; Rai A; Touma J
    Sci Rep; 2021 Sep; 11(1):18767. PubMed ID: 34548516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cylindrical-lens-embedded photonic crystal based on self-collimation.
    Xia C; Gutierrez JJ; Kuebler SM; Rumpf RC; Touma J
    Opt Express; 2022 Mar; 30(6):9165-9180. PubMed ID: 35299352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-loss impedance-matched optical metamaterials with zero-phase delay.
    Yun S; Jiang ZH; Xu Q; Liu Z; Werner DH; Mayer TS
    ACS Nano; 2012 May; 6(5):4475-82. PubMed ID: 22530626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced wavelength sensitivity of the self-collimation superprism effect in photonic crystals via slow light.
    Li W; Zhang X; Lin X; Jiang X
    Opt Lett; 2014 Aug; 39(15):4486-9. PubMed ID: 25078209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact Mach-Zehnder interferometer based on self-collimation of light in a silicon photonic crystal.
    Nguyen HM; Dundar MA; van der Heijden RW; van der Drift EW; Salemink HW; Rogge S; Caro J
    Opt Express; 2010 Mar; 18(7):6437-46. PubMed ID: 20389667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.