These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19392419)

  • 1. Terahertz Bloch oscillator with a modulated bias.
    Hyart T; Alexeeva NV; Mattas J; Alekseev KN
    Phys Rev Lett; 2009 Apr; 102(14):140405. PubMed ID: 19392419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coexistence of Bloch and Parametric Mechanisms of High-Frequency Gain in Doped Superlattices.
    Čižas V; Alexeeva N; Alekseev KN; Valušis G
    Nanomaterials (Basel); 2023 Jul; 13(13):. PubMed ID: 37446509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersive terahertz gain of a nonclassical oscillator: BLOCH oscillation in semiconductor superlattices.
    Sekine N; Hirakawa K
    Phys Rev Lett; 2005 Feb; 94(5):057408. PubMed ID: 15783699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The intensive terahertz electroluminescence induced by Bloch oscillations in SiC natural superlattices.
    Sankin V; Andrianov A; Petrov A; Zakhar'in A; Lepneva A; Shkrebiy P
    Nanoscale Res Lett; 2012 Oct; 7(1):560. PubMed ID: 23043773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices.
    Hyart T; Mattas J; Alekseev KN
    Phys Rev Lett; 2009 Sep; 103(11):117401. PubMed ID: 19792399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz conductivity and possible BLOCH gain in semiconductor superlattices.
    Shimada Y; Hirakawa K; Odnoblioudov M; Chao KA
    Phys Rev Lett; 2003 Jan; 90(4):046806. PubMed ID: 12570445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rectification of terahertz radiation in semiconductor superlattices in the absence of domains.
    Isohätälä J; Alekseev KN
    J Phys Condens Matter; 2012 Apr; 24(14):145303. PubMed ID: 22417810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz radiation induced chaotic electron transport in semiconductor superlattices with a tilted magnetic field.
    Wang C; Wang F; Cao JC
    Chaos; 2014 Sep; 24(3):033109. PubMed ID: 25273189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant crossover of terahertz loss to the gain of a Bloch oscillating InAs/AlSb superlattice.
    Savvidis PG; Kolasa B; Lee G; Allen SJ
    Phys Rev Lett; 2004 May; 92(19):196802. PubMed ID: 15169430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipative Parametric Gain in a GaAs/AlGaAs Superlattice.
    Čižas V; Subačius L; Alexeeva NV; Seliuta D; Hyart T; Köhler K; Alekseev KN; Valušis G
    Phys Rev Lett; 2022 Jun; 128(23):236802. PubMed ID: 35749173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bloch oscillations at room temperature in graphene/h-BN electrostatic superlattices.
    Dragoman M; Dinescu A; Dragoman D; Comanescu F
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34010822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theory of parametric amplification in superlattices.
    Hyart T; Shorokhov AV; Alekseev KN
    Phys Rev Lett; 2007 Jun; 98(22):220404. PubMed ID: 17677823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.
    Murasawa K; Sato K; Hidaka T
    Rev Sci Instrum; 2011 May; 82(5):053104. PubMed ID: 21639489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theory of generalized Bloch oscillations.
    Duggen L; Lew Yan Voon LC; Lassen B; Willatzen M
    J Phys Condens Matter; 2016 Apr; 28(15):155301. PubMed ID: 26986189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field.
    Balanov AG; Fowler D; Patanè A; Eaves L; Fromhold TM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026209. PubMed ID: 18352105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable photonic Bloch oscillations in electrically modulated photonic crystals.
    Wang G; Huang JP; Yu KW
    Opt Lett; 2008 Oct; 33(19):2200-2. PubMed ID: 18830351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling.
    Fathololoumi S; Dupont E; Chan CW; Wasilewski ZR; Laframboise SR; Ban D; Mátyás A; Jirauschek C; Hu Q; Liu HC
    Opt Express; 2012 Feb; 20(4):3866-76. PubMed ID: 22418143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Band conductivity oscillations in a gate-tunable graphene superlattice.
    Huber R; Steffen MN; Drienovsky M; Sandner A; Watanabe K; Taniguchi T; Pfannkuche D; Weiss D; Eroms J
    Nat Commun; 2022 May; 13(1):2856. PubMed ID: 35606355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave synthesis from a continuous-wave terahertz oscillator using a photocarrier terahertz frequency comb.
    Nagano S; Ito H; Kumagai M; Kajita M; Hanado Y
    Opt Lett; 2013 Jun; 38(12):2137-9. PubMed ID: 23939002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.