These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 1939243)

  • 1. Characterization of mutations in oligomerization domain of Lac repressor protein.
    Chakerian AE; Matthews KS
    J Biol Chem; 1991 Nov; 266(33):22206-14. PubMed ID: 1939243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of lactose repressor carboxyl-terminal domain affects tetramer formation.
    Chen J; Matthews KS
    J Biol Chem; 1992 Jul; 267(20):13843-50. PubMed ID: 1629185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lysine 84 is at the subunit interface of lac repressor protein.
    Chang WI; Olson JS; Matthews KS
    J Biol Chem; 1993 Aug; 268(23):17613-22. PubMed ID: 8349640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine 197 of lac repressor contributes significant energy to inducer binding. Confirmation of homology to periplasmic sugar binding proteins.
    Spotts RO; Chakerian AE; Matthews KS
    J Biol Chem; 1991 Dec; 266(34):22998-3002. PubMed ID: 1744095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of aspartate residues that play key roles in the allosteric regulation of a transcription factor: aspartate 274 is essential for inducer binding in lac repressor.
    Chang WI; Barrera P; Matthews KS
    Biochemistry; 1994 Mar; 33(12):3607-16. PubMed ID: 8142359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wild-type operator binding and altered cooperativity for inducer binding of lac repressor dimer mutant R3.
    Chen J; Alberti S; Matthews KS
    J Biol Chem; 1994 Apr; 269(17):12482-7. PubMed ID: 8175655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and modification of a monomeric mutant of the lactose repressor protein.
    Daly TJ; Matthews KS
    Biochemistry; 1986 Sep; 25(19):5474-8. PubMed ID: 3535879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a dimeric repressor: dissection of subunit interfaces in Lac repressor.
    Chen J; Surendran R; Lee JC; Matthews KS
    Biochemistry; 1994 Feb; 33(5):1234-41. PubMed ID: 8110756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Asp274 in lac repressor: diminished sugar binding and altered conformational effects in mutants.
    Chang WI; Matthews KS
    Biochemistry; 1995 Jul; 34(28):9227-34. PubMed ID: 7619824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substitutions at histidine 74 and aspartate 278 alter ligand binding and allostery in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 Mar; 38(12):3579-90. PubMed ID: 10090744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of kinetic and regulatory properties of the tetrameric and dimeric forms of wild-type and Thr427-->Pro mutant human phenylalanine hydroxylase: contribution of the flexible hinge region Asp425-Gln429 to the tetramerization and cooperative substrate binding.
    Bjørgo E; de Carvalho RM; Flatmark T
    Eur J Biochem; 2001 Feb; 268(4):997-1005. PubMed ID: 11179966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of mutants affecting the KRK sequence in the carboxyl-terminal domain of lac repressor.
    Li L; Matthews KS
    J Biol Chem; 1995 May; 270(18):10640-9. PubMed ID: 7738001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium.
    Müller-Hartmann H; Müller-Hill B
    J Mol Biol; 1996 Apr; 257(3):473-8. PubMed ID: 8648615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage.
    Falcon CM; Swint-Kruse L; Matthews KS
    J Biol Chem; 1997 Oct; 272(43):26818-21. PubMed ID: 9341111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the asymmetrical contact between lac repressor and lac operator DNA.
    Rastinejad F; Artz P; Lu P
    J Mol Biol; 1993 Oct; 233(3):389-99. PubMed ID: 8411152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy.
    Royer CA; Chakerian AE; Matthews KS
    Biochemistry; 1990 May; 29(20):4959-66. PubMed ID: 2194564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence.
    Markiewicz P; Kleina LG; Cruz C; Ehret S; Miller JH
    J Mol Biol; 1994 Jul; 240(5):421-33. PubMed ID: 8046748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of unfolding and dissociation in lactose repressor protein.
    Barry JK; Matthews KS
    Biochemistry; 1999 May; 38(20):6520-8. PubMed ID: 10350470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation from a distance: mutations that alter LacI function through long-range effects.
    Swint-Kruse L; Zhan H; Fairbanks BM; Maheshwari A; Matthews KS
    Biochemistry; 2003 Dec; 42(47):14004-16. PubMed ID: 14636069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.