These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1939243)

  • 61. Biophysical characterization of recombinant proteins expressing the leucine zipper-like domain of the human immunodeficiency virus type 1 transmembrane protein gp41.
    Shugars DC; Wild CT; Greenwell TK; Matthews TJ
    J Virol; 1996 May; 70(5):2982-91. PubMed ID: 8627774
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of cytR mutations that influence oligomerization of mutant repressor subunits.
    Barbier CS; Short SA
    J Bacteriol; 1993 Aug; 175(15):4625-30. PubMed ID: 8335621
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inducer and anti-inducer interactions with the lac repressor seen by nuclear magnetic resonance changes at tyrosines and tryptophans.
    Boschelli F; Jarema MA; Lu P
    J Biol Chem; 1981 Nov; 256(22):11595-9. PubMed ID: 7028737
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functional impact of polar and acidic substitutions in the lactose repressor hydrophobic monomer.monomer interface with a buried lysine.
    Zhan H; Sun Z; Matthews KS
    Biochemistry; 2009 Feb; 48(6):1305-14. PubMed ID: 19166325
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Construction and characterization of monomeric tryptophan repressor: a model for an early intermediate in the folding of a dimeric protein.
    Shao X; Hensley P; Matthews CR
    Biochemistry; 1997 Aug; 36(32):9941-9. PubMed ID: 9245428
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Exploring subunit-subunit interactions in the Escherichia coli bo-type ubiquinol oxidase by extragenic suppressor mutation analysis.
    Saiki K; Mogi T; Tsubaki M; Hori H; Anraku Y
    J Biol Chem; 1997 Jun; 272(23):14721-6. PubMed ID: 9169436
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of amino acid alterations in the tryptophan-binding site of the trp repressor.
    He JJ; Matthews KS
    J Biol Chem; 1990 Jan; 265(2):731-7. PubMed ID: 2295616
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cooperative and anticooperative effects in binding of the first and second plasmid Osym operators to a LacI tetramer: evidence for contributions of non-operator DNA binding by wrapping and looping.
    Levandoski MM; Tsodikov OV; Frank DE; Melcher SE; Saecker RM; Record MT
    J Mol Biol; 1996 Aug; 260(5):697-717. PubMed ID: 8709149
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Escherichia coli purine repressor: key residues for the allosteric transition between active and inactive conformations and for interdomain signaling.
    Lu F; Brennan RG; Zalkin H
    Biochemistry; 1998 Nov; 37(45):15680-90. PubMed ID: 9843372
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of the putative GTP-binding site residues of Escherichia coli adenylosuccinate synthetase by site-directed mutagenesis.
    Kang C; Fromm HJ
    Arch Biochem Biophys; 1994 May; 310(2):475-80. PubMed ID: 8179335
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Equilibrium binding of inducer to lac repressor.operator DNA complex.
    O'Gorman RB; Rosenberg JM; Kallai OB; Dickerson RE; Itakura K; Riggs AD; Matthews KS
    J Biol Chem; 1980 Nov; 255(21):10107-14. PubMed ID: 7000771
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Repression of the E coli recA gene requires at least two LexA protein monomers.
    Thliveris AT; Little JW; Mount DW
    Biochimie; 1991 Apr; 73(4):449-56. PubMed ID: 1911945
    [TBL] [Abstract][Full Text] [Related]  

  • 73. lac repressor: crystallization of intact tetramer and its complexes with inducer and operator DNA.
    Pace HC; Lu P; Lewis M
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1870-3. PubMed ID: 2408042
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Degradation of the DNA-binding domain of wild-type and i-d lac repressors in Escherichia coli.
    Schlotmann M; Beyreuther K
    Eur J Biochem; 1979 Mar; 95(1):39-49. PubMed ID: 378656
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Serine to cysteine mutations in trp repressor protein alter tryptophan and operator binding.
    Chou WY; Matthews KS
    J Biol Chem; 1989 Nov; 264(31):18314-9. PubMed ID: 2509454
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Critical side-chain interactions at a subunit interface in the Arc repressor dimer.
    Milla ME; Sauer RT
    Biochemistry; 1995 Mar; 34(10):3344-51. PubMed ID: 7880830
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Exploring the role of alanine in the structure of the Lac repressor tetramerization domain, a ferritin-like Alacoil.
    Solan A; Ratia K; Fairman R
    J Mol Biol; 2002 Apr; 317(4):601-12. PubMed ID: 11955012
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Arginine 54 in the active site of Escherichia coli aspartate transcarbamoylase is critical for catalysis: a site-specific mutagenesis, NMR, and X-ray crystallographic study.
    Stebbins JW; Robertson DE; Roberts MF; Stevens RC; Lipscomb WN; Kantrowitz ER
    Protein Sci; 1992 Nov; 1(11):1435-46. PubMed ID: 1303763
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermodynamic evaluation of binding interactions in the methionine repressor system of Escherichia coli using isothermal titration calorimetry.
    Hyre DE; Spicer LD
    Biochemistry; 1995 Mar; 34(10):3212-21. PubMed ID: 7880815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.