These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dynamical evolution of correlated spontaneous emission of a single photon from a uniformly excited cloud of N atoms. Svidzinsky AA; Chang JT; Scully MO Phys Rev Lett; 2008 Apr; 100(16):160504. PubMed ID: 18518176 [TBL] [Abstract][Full Text] [Related]
4. Excited-state quantum phase transitions in Dicke superradiance models. Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032133. PubMed ID: 24125239 [TBL] [Abstract][Full Text] [Related]
5. Observation of Single-Photon Superradiance and the Cooperative Lamb Shift in an Extended Sample of Cold Atoms. Roof SJ; Kemp KJ; Havey MD; Sokolov IM Phys Rev Lett; 2016 Aug; 117(7):073003. PubMed ID: 27563958 [TBL] [Abstract][Full Text] [Related]
6. Observation of Dicke superradiance for two artificial atoms in a cavity with high decay rate. Mlynek JA; Abdumalikov AA; Eichler C; Wallraff A Nat Commun; 2014 Nov; 5():5186. PubMed ID: 25366061 [TBL] [Abstract][Full Text] [Related]
7. Universality of Dicke superradiance in arrays of quantum emitters. Masson SJ; Asenjo-Garcia A Nat Commun; 2022 Apr; 13(1):2285. PubMed ID: 35477714 [TBL] [Abstract][Full Text] [Related]
8. Large Collective Lamb Shift of Two Distant Superconducting Artificial Atoms. Wen PY; Lin KT; Kockum AF; Suri B; Ian H; Chen JC; Mao SY; Chiu CC; Delsing P; Nori F; Lin GD; Hoi IC Phys Rev Lett; 2019 Dec; 123(23):233602. PubMed ID: 31868475 [TBL] [Abstract][Full Text] [Related]
9. Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms. Chen L; Wang P; Meng Z; Huang L; Cai H; Wang DW; Zhu SY; Zhang J Phys Rev Lett; 2018 May; 120(19):193601. PubMed ID: 29799222 [TBL] [Abstract][Full Text] [Related]
12. Suppressing and Restoring the Dicke Superradiance Transition by Dephasing and Decay. Kirton P; Keeling J Phys Rev Lett; 2017 Mar; 118(12):123602. PubMed ID: 28388206 [TBL] [Abstract][Full Text] [Related]
13. Superbunching and Nonclassicality as new Hallmarks of Superradiance. Bhatti D; von Zanthier J; Agarwal GS Sci Rep; 2015 Dec; 5():17335. PubMed ID: 26632212 [TBL] [Abstract][Full Text] [Related]
14. Superradiance in a Large and Dilute Cloud of Cold Atoms in the Linear-Optics Regime. Araújo MO; Krešić I; Kaiser R; Guerin W Phys Rev Lett; 2016 Aug; 117(7):073002. PubMed ID: 27563957 [TBL] [Abstract][Full Text] [Related]
15. Photon localization and Dicke superradiance in atomic gases. Akkermans E; Gero A; Kaiser R Phys Rev Lett; 2008 Sep; 101(10):103602. PubMed ID: 18851215 [TBL] [Abstract][Full Text] [Related]
17. From superradiance to subradiance: exploring the many-body Dicke ladder. Glicenstein A; Ferioli G; Browaeys A; Ferrier-Barbut I Opt Lett; 2022 Mar; 47(6):1541-1544. PubMed ID: 35290359 [TBL] [Abstract][Full Text] [Related]
18. Cascaded collective decay in regular arrays of cold trapped atoms. Ostermann L; Zoubi H; Ritsch H Opt Express; 2012 Dec; 20(28):29634-45. PubMed ID: 23388791 [TBL] [Abstract][Full Text] [Related]
19. Controlled Dicke subradiance from a large cloud of two-level systems. Bienaimé T; Piovella N; Kaiser R Phys Rev Lett; 2012 Mar; 108(12):123602. PubMed ID: 22540580 [TBL] [Abstract][Full Text] [Related]
20. Combining red and blue-detuned optical potentials to form a Lamb-Dicke trap for a single neutral atom. He X; Yu S; Xu P; Wang J; Zhan M Opt Express; 2012 Feb; 20(4):3711-24. PubMed ID: 22418129 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]