These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19392455)

  • 1. Mixed barrier model for the mixed glass former effect in ion conducting glasses.
    Schuch M; Müller CR; Maass P; Martin SW
    Phys Rev Lett; 2009 Apr; 102(14):145902. PubMed ID: 19392455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition Dependence of the Na(+) Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect.
    Martin SW; Bischoff C; Schuller K
    J Phys Chem B; 2015 Dec; 119(51):15738-51. PubMed ID: 26618389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic conductivity of mixed glass former 0.35Na(2)O + 0.65[xB(2)O(3) + (1 - x)P(2)O(5)] glasses.
    Christensen R; Olson G; Martin SW
    J Phys Chem B; 2013 Dec; 117(51):16577-86. PubMed ID: 24295052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.
    Bischoff C; Schuller K; Dunlap N; Martin SW
    J Phys Chem B; 2014 Feb; 118(7):1943-53. PubMed ID: 24447260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.
    Bischoff C; Schuller K; Martin SW
    J Phys Chem B; 2014 Apr; 118(13):3710-9. PubMed ID: 24605917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition Dependence of the Glass-Transition Temperature and Molar Volume in Sodium Thiosilicophosphate Glasses: A Structural Interpretation Using a Real Solution Model.
    Watson DE; Martin SW
    J Phys Chem B; 2018 Nov; 122(46):10637-10646. PubMed ID: 30375879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of mixed glass former 0.35Na2O + 0.65[xB2O3 + (1 - x)P2O5] glasses by Raman and 11B and 31P magic angle spinning nuclear magnetic resonance spectroscopies.
    Christensen R; Olson G; Martin SW
    J Phys Chem B; 2013 Feb; 117(7):2169-79. PubMed ID: 23281937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new model linking elastic properties and ionic conductivity of mixed network former glasses.
    Wang W; Christensen R; Curtis B; Martin SW; Kieffer J
    Phys Chem Chem Phys; 2018 Jan; 20(3):1629-1641. PubMed ID: 29261212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A significant enhancement of sodium ion conductivity in phosphate glasses by addition of WO
    Renka S; Pavić L; Tricot G; Mošner P; Koudelka L; Moguš-Milanković A; Šantić A
    Phys Chem Chem Phys; 2021 Apr; 23(16):9761-9772. PubMed ID: 33881071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positive and Negative Mixed Glass Former Effects in Sodium Borosilicate and Borophosphate Glasses Studied by (23)Na NMR.
    Storek M; Adjei-Acheamfour M; Christensen R; Martin SW; Böhmer R
    J Phys Chem B; 2016 May; 120(19):4482-95. PubMed ID: 27092392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of silver ions in AgI doped Ag
    Palui A; Shaw A; Ghosh A
    Phys Chem Chem Phys; 2016 Sep; 18(37):25937-25945. PubMed ID: 27711576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cation Diffusivity and the Mixed Network Former Effect in Borosilicate Glasses.
    Smedskjaer MM; Mauro JC; Yue Y
    J Phys Chem B; 2015 Jun; 119(23):7106-15. PubMed ID: 25978700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistics of modifier distributions in mixed network glasses.
    Mauro JC
    J Chem Phys; 2013 Mar; 138(12):12A522. PubMed ID: 23556773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and topological aspects of borophosphate glasses and their relation to physical properties.
    Hermansen C; Youngman RE; Wang J; Yue Y
    J Chem Phys; 2015 May; 142(18):184503. PubMed ID: 25978896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR and conductivity studies of the mixed glass former effect in lithium borophosphate glasses.
    Storek M; Böhmer R; Martin SW; Larink D; Eckert H
    J Chem Phys; 2012 Sep; 137(12):124507. PubMed ID: 23020343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mixed alkali effect in ionically conducting glasses revisited: a study by molecular dynamics simulation.
    Habasaki J; Ngai KL
    Phys Chem Chem Phys; 2007 Sep; 9(33):4673-89. PubMed ID: 17700869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of lithium ions in borotellurite mixed former glasses: correlation between the characteristic length scales of mobile ions and glass network structural units.
    Shaw A; Ghosh A
    J Chem Phys; 2014 Oct; 141(16):164504. PubMed ID: 25362322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic properties and short-range structural order in mixed network former glasses.
    Wang W; Christensen R; Curtis B; Hynek D; Keizer S; Wang J; Feller S; Martin SW; Kieffer J
    Phys Chem Chem Phys; 2017 Jun; 19(24):15942-15952. PubMed ID: 28593205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Arrhenius ionic conductivities in glasses due to a distribution of activation energies.
    Bischoff C; Schuller K; Beckman SP; Martin SW
    Phys Rev Lett; 2012 Aug; 109(7):075901. PubMed ID: 23006384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New mixed alkali effect in the ac conductivity of ion-conducting glasses.
    Cramer C; Brunklaus S; Ratai E; Gao Y
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):266601. PubMed ID: 14754075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.