These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19392465)

  • 1. Vibrational nonequilibrium effects in the conductance of single molecules with multiple electronic states.
    Härtle R; Benesch C; Thoss M
    Phys Rev Lett; 2009 Apr; 102(14):146801. PubMed ID: 19392465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Mode-selective vibrational excitation induced by nonequilibrium transport processes in single-molecule junctions.
    Härtle R; Volkovich R; Thoss M; Peskin U
    J Chem Phys; 2010 Aug; 133(8):081102. PubMed ID: 20815551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum interference and decoherence in single-molecule junctions: how vibrations induce electrical current.
    Härtle R; Butzin M; Rubio-Pons O; Thoss M
    Phys Rev Lett; 2011 Jul; 107(4):046802. PubMed ID: 21867029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phonon effects on the current noise spectra and the ac conductance of a single molecular junction.
    Ding GH; Dong B
    J Phys Condens Matter; 2014 Jul; 26(30):305301. PubMed ID: 25008584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bias-controlled selective excitation of vibrational modes in molecular junctions: a route towards mode-selective chemistry.
    Volkovich R; Härtle R; Thoss M; Peskin U
    Phys Chem Chem Phys; 2011 Aug; 13(32):14333-49. PubMed ID: 21776449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical properties of current carrying molecular wires.
    Galperin M; Nitzan A
    J Chem Phys; 2006 Jun; 124(23):234709. PubMed ID: 16821943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential-Induced High-Conductance Transport Pathways through Single-Molecule Junctions.
    Yasini P; Afsari S; Peng H; Pikma P; Perdew JP; Borguet E
    J Am Chem Soc; 2019 Jun; 141(25):10109-10116. PubMed ID: 31244139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic transport calculations for the conductance of Pt-1,4-phenylene diisocyanide-Pt molecular junctions.
    Zhang R; Ma G; Bai M; Sun L; Rungger I; Shen Z; Sanvito S; Hou S
    Nanotechnology; 2010 Apr; 21(15):155203. PubMed ID: 20332563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of intermolecular interaction and molecule-electrode couplings on molecular electronic conductance.
    Geng H; Yin S; Chen KQ; Shuai Z
    J Phys Chem B; 2005 Jun; 109(25):12304-8. PubMed ID: 16852518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonequilibrium electronic structure of interacting single-molecule nanojunctions: vertex corrections and polarization effects for the electron-vibron coupling.
    Dash LK; Ness H; Godby RW
    J Chem Phys; 2010 Mar; 132(10):104113. PubMed ID: 20232953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study of molecular conduction. III. A nonequilibrium-Green's-function-based Hartree-Fock approach.
    Shimazaki T; Xue Y; Ratner MA; Yamashita K
    J Chem Phys; 2006 Mar; 124(11):114708. PubMed ID: 16555911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium electronic transport of 4,4'-bipyridine molecular junction.
    Wu X; Li Q; Huang J; Yang J
    J Chem Phys; 2005 Nov; 123(18):184712. PubMed ID: 16292926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of single-molecule junction conductance of porphyrins via a transition-metal center.
    Liu ZF; Wei S; Yoon H; Adak O; Ponce I; Jiang Y; Jang WD; Campos LM; Venkataraman L; Neaton JB
    Nano Lett; 2014 Sep; 14(9):5365-70. PubMed ID: 25111197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling perturbative approaches in phonon-assisted transport junctions.
    Agarwalla BK; Segal D
    J Chem Phys; 2016 Feb; 144(7):074102. PubMed ID: 26896971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of electrode orientations on charge transport in alkanedithiol single-molecule junctions.
    Sen A; Kaun CC
    ACS Nano; 2010 Nov; 4(11):6404-8. PubMed ID: 20936842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the molecule-electrode interface on the low-bias conductance of Cu-H2-Cu single-molecule junctions.
    Jiang Z; Wang H; Shen Z; Sanvito S; Hou S
    J Chem Phys; 2016 Jul; 145(4):044701. PubMed ID: 27475380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path-integral simulations with fermionic and bosonic reservoirs: transport and dissipation in molecular electronic junctions.
    Simine L; Segal D
    J Chem Phys; 2013 Jun; 138(21):214111. PubMed ID: 23758362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic transport in fullerene C20 bridge assisted by molecular vibrations.
    Yamamoto T; Watanabe K; Watanabe S
    Phys Rev Lett; 2005 Aug; 95(6):065501. PubMed ID: 16090961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions.
    Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H
    Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerically exact, time-dependent treatment of vibrationally coupled electron transport in single-molecule junctions.
    Wang H; Pshenichnyuk I; Härtle R; Thoss M
    J Chem Phys; 2011 Dec; 135(24):244506. PubMed ID: 22225168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.