These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 19392482)

  • 1. Coexistence of melting and growth during heating of a semicrystalline polymer.
    Luo C; Sommer JU
    Phys Rev Lett; 2009 Apr; 102(14):147801. PubMed ID: 19392482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmental Mobility in the Non-crystalline Regions of Semicrystalline Polymers and its Implications on Melting.
    Rastogi S; Yao Y; Lippits DR; Höhne GW; Graf R; Spiess HW; Lemstra PJ
    Macromol Rapid Commun; 2009 May; 30(9-10):826-39. PubMed ID: 21706665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of melting of perfect crystalline hexahydro-1,3,5-trinitro-1,3,5-s-triazine.
    Zheng L; Thompson DL
    J Chem Phys; 2006 Aug; 125(8):084505. PubMed ID: 16965027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomistic simulations of spinodal phase separation preceding polymer crystallization.
    Gee RH; Lacevic N; Fried LE
    Nat Mater; 2006 Jan; 5(1):39-43. PubMed ID: 16380730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the phase diagram of water from direct coexistence simulations: the phase diagram of the TIP4P/2005 model revisited.
    Conde MM; Gonzalez MA; Abascal JL; Vega C
    J Chem Phys; 2013 Oct; 139(15):154505. PubMed ID: 24160525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric Molecular Dynamics and Anisotropic Phase Separation in the Cocrystal of the Crystalline/Crystalline Polymer Blend.
    Zheng Y; Kafle N; Schwarz D; Eagan JM; Hayano S; Nakama Y; Pan P; Miyoshi T
    ACS Macro Lett; 2022 Feb; 11(2):193-198. PubMed ID: 35574768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of selected polarizable and nonpolarizable water models in molecular dynamics simulations of ice I(h).
    Gladich I; Roeselová M
    Phys Chem Chem Phys; 2012 Aug; 14(32):11371-85. PubMed ID: 22801804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nascent structure memory erased in polymer stretching.
    Luo W; Yu Y; Wang J; Hu W
    J Chem Phys; 2022 Apr; 156(14):144904. PubMed ID: 35428382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of substrate and molecular weight on the stability of thin films of semicrystalline block copolymers.
    Liang GD; Xu JT; Fan ZQ; Mai SM; Ryan AJ
    Langmuir; 2007 Mar; 23(7):3673-9. PubMed ID: 17311433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and conformational changes of poly(trimethylene terephthalate) during isothermal melt crystallization.
    Vasanthan N; Ozkaya S; Yaman M
    J Phys Chem B; 2010 Oct; 114(41):13069-75. PubMed ID: 20942505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation.
    Tan CP; Man YC
    Phytochem Anal; 2002; 13(3):129-41. PubMed ID: 12099103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of small loops in DNA melting.
    Lando DY; Fridman AS
    Biopolymers; 2001 Apr; 58(4):374-89. PubMed ID: 11180051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations of melting and the glass transition of nitromethane.
    Zheng L; Luo SN; Thompson DL
    J Chem Phys; 2006 Apr; 124(15):154504. PubMed ID: 16674239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of Pt-Au nanoalloys during heating process: comparison of random and core-shell orderings.
    Yang Z; Yang X; Xu Z; Liu S
    Phys Chem Chem Phys; 2009 Aug; 11(29):6249-55. PubMed ID: 19606336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientational melting and reorientational motion in a cubane molecular crystal: a molecular simulation study.
    Murugan NA
    J Phys Chem B; 2005 Dec; 109(50):23955-62. PubMed ID: 16375384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface.
    García Fernández R; Abascal JL; Vega C
    J Chem Phys; 2006 Apr; 124(14):144506. PubMed ID: 16626213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state due to stress-induced localized melting and recrystallization.
    Lu Y; Wang Y; Fu L; Jiang Z; Men Y
    J Phys Chem B; 2014 Nov; 118(45):13019-23. PubMed ID: 25343475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local structure of semicrystalline P3HT films probed by nanofocused coherent X-rays.
    Kurta RP; Grodd L; Mikayelyan E; Gorobtsov OY; Zaluzhnyy IA; Fratoddi I; Venditti I; Russo MV; Sprung M; Vartanyants IA; Grigorian S
    Phys Chem Chem Phys; 2015 Mar; 17(11):7404-10. PubMed ID: 25700131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.
    Magoń A; Pyda M
    Carbohydr Res; 2011 Nov; 346(16):2558-66. PubMed ID: 22000766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early structural development in melt-quenched polymer PTT from atomistic molecular dynamic simulations.
    Hsieh MK; Lin ST
    J Phys Condens Matter; 2009 Dec; 21(50):505101. PubMed ID: 21836223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.