These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19392535)

  • 1. Atomic-resolution imaging with a sub-50-pm electron probe.
    Erni R; Rossell MD; Kisielowski C; Dahmen U
    Phys Rev Lett; 2009 Mar; 102(9):096101. PubMed ID: 19392535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving 45-pm-separated Si-Si atomic columns with an aberration-corrected STEM.
    Sawada H; Shimura N; Hosokawa F; Shibata N; Ikuhara Y
    Microscopy (Oxf); 2015 Jun; 64(3):213-7. PubMed ID: 25825509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun.
    Sawada H; Tanishiro Y; Ohashi N; Tomita T; Hosokawa F; Kaneyama T; Kondo Y; Takayanagi K
    J Electron Microsc (Tokyo); 2009 Dec; 58(6):357-61. PubMed ID: 19546144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aberration-corrected STEM/TEM imaging at 15kV.
    Sasaki T; Sawada H; Hosokawa F; Sato Y; Suenaga K
    Ultramicroscopy; 2014 Oct; 145():50-5. PubMed ID: 24842229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun.
    Sasaki T; Sawada H; Hosokawa F; Kohno Y; Tomita T; Kaneyama T; Kondo Y; Kimoto K; Sato Y; Suenaga K
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S7-13. PubMed ID: 20581425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aberration-corrected STEM for atomic-resolution imaging and analysis.
    Krivanek OL; Lovejoy TC; Dellby N
    J Microsc; 2015 Sep; 259(3):165-72. PubMed ID: 25939916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic imaging using secondary electrons in a scanning transmission electron microscope: experimental observations and possible mechanisms.
    Inada H; Su D; Egerton RF; Konno M; Wu L; Ciston J; Wall J; Zhu Y
    Ultramicroscopy; 2011 Jun; 111(7):865-76. PubMed ID: 21185651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attainment of 40.5 pm spatial resolution using 300 kV scanning transmission electron microscope equipped with fifth-order aberration corrector.
    Morishita S; Ishikawa R; Kohno Y; Sawada H; Shibata N; Ikuhara Y
    Microscopy (Oxf); 2018 Feb; 67(1):46-50. PubMed ID: 29309606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois.
    Wen J; Mabon J; Lei C; Burdin S; Sammann E; Petrov I; Shah AB; Chobpattana V; Zhang J; Ran K; Zuo JM; Mishina S; Aoki T
    Microsc Microanal; 2010 Apr; 16(2):183-93. PubMed ID: 20187990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artifacts in aberration-corrected ADF-STEM imaging.
    Yu Z; Batson PE; Silcox J
    Ultramicroscopy; 2003 Sep; 96(3-4):275-84. PubMed ID: 12871794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of residual aberration in fifth-order geometrical aberration correctors.
    Morishita S; Kohno Y; Hosokawa F; Suenaga K; Sawada H
    Microscopy (Oxf); 2018 Jun; 67(3):156-163. PubMed ID: 29474670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images.
    Martinez GT; De Backer A; Rosenauer A; Verbeeck J; Van Aert S
    Micron; 2014 Aug; 63():57-63. PubMed ID: 24462219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct sub-angstrom imaging of a crystal lattice.
    Nellist PD; Chisholm MF; Dellby N; Krivanek OL; Murfitt MF; Szilagyi ZS; Lupini AR; Borisevich A; Sides WH; Pennycook SJ
    Science; 2004 Sep; 305(5691):1741. PubMed ID: 15375260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-ångstrom resolution using aberration corrected electron optics.
    Batson PE; Dellby N; Krivanek OL
    Nature; 2002 Aug; 418(6898):617-20. PubMed ID: 12167855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of STEM aberration correction on materials science.
    Pennycook SJ
    Ultramicroscopy; 2017 Sep; 180():22-33. PubMed ID: 28438428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging modes for scanning confocal electron microscopy in a double aberration-corrected transmission electron microscope.
    Nellist PD; Cosgriff EC; Behan G; Kirkland AI
    Microsc Microanal; 2008 Feb; 14(1):82-8. PubMed ID: 18096098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial atomic structure analysis at sub-angstrom resolution using aberration-corrected STEM.
    Hsiao CN; Kuo SY; Lai FI; Chen WC
    Nanoscale Res Lett; 2014; 9(1):578. PubMed ID: 25426003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.
    Morgan DG; Ramasse QM; Browning ND
    J Electron Microsc (Tokyo); 2009 Jun; 58(3):223-44. PubMed ID: 19297343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on probe current dependence of the intensity distribution in annular dark field images.
    Kim S; Oshima Y; Tanishiro Y; Takayanagi K
    Ultramicroscopy; 2012 Oct; 121():38-41. PubMed ID: 22935692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice-resolution contrast from a focused coherent electron probe. Part I.
    Allen LJ; Findlay SD; Oxley MP; Rossouw CJ
    Ultramicroscopy; 2003 Jul; 96(1):47-63. PubMed ID: 12623171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.