BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 1939255)

  • 1. Biosynthesis of phycobilins. Ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium.
    Beale SI; Cornejo J
    J Biol Chem; 1991 Nov; 266(33):22328-32. PubMed ID: 1939255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthesis of phycobilins. Ferredoxin-supported nadph-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium.
    Rhie G; Beale SI
    J Biol Chem; 1992 Aug; 267(23):16088-93. PubMed ID: 1644795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthesis of phycobilins. 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IX alpha.
    Beale SI; Cornejo J
    J Biol Chem; 1991 Nov; 266(33):22333-40. PubMed ID: 1939256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of phycobilins. 15,16-Dihydrobiliverdin IX alpha is a partially reduced intermediate in the formation of phycobilins from biliverdin IX alpha.
    Beale SI; Cornejo J
    J Biol Chem; 1991 Nov; 266(33):22341-5. PubMed ID: 1939257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phycobilin biosynthesis: reductant requirements and product identification for heme oxygenase from Cyanidium caldarium.
    Rhie G; Beale SI
    Arch Biochem Biophys; 1995 Jun; 320(1):182-94. PubMed ID: 7793979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of phycocyanobilin from exogenous labeled biliverdin in Cyanidium caldarium.
    Beale SI; Cornejo J
    Arch Biochem Biophys; 1983 Nov; 227(1):279-86. PubMed ID: 6416181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Algal heme oxygenase from Cyanidium caldarium. Partial purification and fractionation into three required protein components.
    Cornejo J; Beale SI
    J Biol Chem; 1988 Aug; 263(24):11915-21. PubMed ID: 3136167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium.
    Beale SI; Cornejo J
    Arch Biochem Biophys; 1984 Dec; 235(2):371-84. PubMed ID: 6549121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of heme oxygenase activity in Cyanidium caldarium by light, glucose, and phycobilin precursors.
    Rhie G; Beale SI
    J Biol Chem; 1994 Apr; 269(13):9620-6. PubMed ID: 8144549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria.
    Beale SI
    Ciba Found Symp; 1994; 180():156-68; discussion 168-71. PubMed ID: 7842851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthesis of the chromophore of phycocyanin. Pathway of reduction of biliverdin to phycocyanobilin.
    Brown SB; Holroyd JA; Vernon DI; Shim YK; Smith KM
    Biochem J; 1989 Jul; 261(1):259-63. PubMed ID: 2505754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of phycobiliproteins. Incorporation of biliverdin into phycocyanin of the red alga Cyanidium caldarium.
    Brown SB; Holroyd JA; Vernon DI
    Biochem J; 1984 May; 219(3):905-9. PubMed ID: 6743252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biliverdin reduction by cyanobacterial phycocyanobilin:ferredoxin oxidoreductase (PcyA) proceeds via linear tetrapyrrole radical intermediates.
    Tu SL; Gunn A; Toney MD; Britt RD; Lagarias JC
    J Am Chem Soc; 2004 Jul; 126(28):8682-93. PubMed ID: 15250720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of the chromophore of phycobiliproteins. A study of mesohaem and mesobiliverdin as possible intermediates and further evidence for an algal haem oxygenase.
    Brown SB; Holroyd JA
    Biochem J; 1984 Jan; 217(1):265-72. PubMed ID: 6546514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bile pigment synthesis in plants. Incorporation of haem into phycocyanobilin and phycobiliproteins in Cyanidium caldarium.
    Brown SB; Holroyd JA; Troxler RF; Offner GD
    Biochem J; 1981 Jan; 194(1):137-47. PubMed ID: 7305974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phycocyanobilin is the natural precursor of the phytochrome chromophore in the green alga Mesotaenium caldariorum.
    Wu SH; McDowell MT; Lagarias JC
    J Biol Chem; 1997 Oct; 272(41):25700-5. PubMed ID: 9325294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivation of phytochrome- and phycobiliprotein-chromophore precursors by rat liver biliverdin reductase.
    Terry MJ; Maines MD; Lagarias JC
    J Biol Chem; 1993 Dec; 268(35):26099-106. PubMed ID: 8253726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bile pigment synthesis in plants. Mechanism of 18O incorporation into phycocyanobilin in the unicellular rhodophyte. Cyanidium caldarium.
    Troxler RF; Brown AS; Brown SB
    J Biol Chem; 1979 May; 254(9):3411-8. PubMed ID: 429358
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanism of bile-pigment synthesis in algae. 18O incorporation into phycocyanobilin in the unicellular rhodophyte, Cyanidium caldarium.
    Brown SB; Holroyd AJ; Troxler RF
    Biochem J; 1980 Aug; 190(2):445-9. PubMed ID: 7470059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytochrome chromophore biosynthesis. Treatment of tetrapyrrole-deficient Avena explants with natural and non-natural bilatrienes leads to formation of spectrally active holoproteins.
    Elich TD; McDonagh AF; Palma LA; Lagarias JC
    J Biol Chem; 1989 Jan; 264(1):183-9. PubMed ID: 2909515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.