These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 19392707)

  • 41. Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system.
    Chong-Pérez B; Kosky RG; Reyes M; Rojas L; Ocaña B; Tejeda M; Pérez B; Angenon G
    J Biotechnol; 2012 Jun; 159(4):265-73. PubMed ID: 21839123
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The influence of matrix attachment regions on transgene expression in Arabidopsis thaliana wild type and gene silencing mutants.
    De Bolle MF; Butaye KM; Goderis IJ; Wouters PF; Jacobs A; Delauré SL; Depicker A; Cammue BP
    Plant Mol Biol; 2007 Mar; 63(4):533-43. PubMed ID: 17136580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A self-excising Cre recombinase allows efficient recombination of multiple ectopic heterospecific lox sites in transgenic tobacco.
    Mlynárová L; Nap JP
    Transgenic Res; 2003 Feb; 12(1):45-57. PubMed ID: 12650524
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants.
    Moravcíková J; Vaculková E; Bauer M; Libantová J
    Theor Appl Genet; 2008 Nov; 117(8):1325-34. PubMed ID: 18779945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plastid marker gene excision in greenhouse-grown tobacco by agrobacterium-delivered Cre recombinase.
    Tungsuchat-Huang T; Maliga P
    Methods Mol Biol; 2014; 1132():205-20. PubMed ID: 24599855
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.
    Shcherbak N; Kishchenko O; Sakhno L; Komarnytsky I; Kuchuk M
    Tsitol Genet; 2013; 47(3):21-32. PubMed ID: 23821951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Construction of Marker-Free Transgenic Strains of Chlamydomonas reinhardtii Using a Cre/loxP-Mediated Recombinase System.
    Kasai Y; Harayama S
    PLoS One; 2016; 11(8):e0161733. PubMed ID: 27564988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection.
    Zou X; Peng A; Xu L; Liu X; Lei T; Yao L; He Y; Chen S
    Plant Cell Rep; 2013 Oct; 32(10):1601-13. PubMed ID: 23771575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation.
    Wenck A; Czakó M; Kanevski I; Márton L
    Plant Mol Biol; 1997 Aug; 34(6):913-22. PubMed ID: 9290643
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.
    Mestiri I; Norre F; Gallego ME; White CI
    Plant J; 2014 Feb; 77(4):511-20. PubMed ID: 24299074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method.
    Desfeux C; Clough SJ; Bent AF
    Plant Physiol; 2000 Jul; 123(3):895-904. PubMed ID: 10889238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reactivation of an integrated disabled viral vector using a Cre-loxP recombination system in Arabidopsis thaliana.
    Tremblay A; Beauchemin C; Séguin A; Laliberté JF
    Transgenic Res; 2007 Apr; 16(2):213-22. PubMed ID: 17103245
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design of a novel system for the construction of vectors for Agrobacterium-mediated plant transformation.
    Mozo T; Hooykaas PJ
    Mol Gen Genet; 1992 Dec; 236(1):1-7. PubMed ID: 1494341
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Construction of selectable marker-removable plant expression vectors].
    Gao S; Su L; Jia HG; Guo HN; Tian YC; Fang RX; Chen XY
    Sheng Wu Gong Cheng Xue Bao; 2007 Jan; 23(1):157-60. PubMed ID: 17366906
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects.
    Schubert D; Lechtenberg B; Forsbach A; Gils M; Bahadur S; Schmidt R
    Plant Cell; 2004 Oct; 16(10):2561-72. PubMed ID: 15367719
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomic stability in Arabidopsis thaliana transgenic plants obtained by floral dip.
    Labra M; Vannini C; Grassi F; Bracale M; Balsemin M; Basso B; Sala F
    Theor Appl Genet; 2004 Nov; 109(7):1512-8. PubMed ID: 15300384
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs.
    Grevelding C; Fantes V; Kemper E; Schell J; Masterson R
    Plant Mol Biol; 1993 Nov; 23(4):847-60. PubMed ID: 8251637
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens.
    Louwerse JD; van Lier MC; van der Steen DM; de Vlaam CM; Hooykaas PJ; Vergunst AC
    Plant Physiol; 2007 Dec; 145(4):1282-93. PubMed ID: 17921337
    [TBL] [Abstract][Full Text] [Related]  

  • 59. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits.
    Bitrián M; Roodbarkelari F; Horváth M; Koncz C
    Plant J; 2011 Mar; 65(5):829-42. PubMed ID: 21235649
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A developmentally regulated Cre-lox system to generate marker-free transgenic Brassica napus plants.
    Kopertekh L; Broer I; Schiemann J
    Methods Mol Biol; 2012; 847():335-50. PubMed ID: 22351020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.