These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19393071)

  • 1. Granger causality vs. dynamic Bayesian network inference: a comparative study.
    Zou C; Denby KJ; Feng J
    BMC Bioinformatics; 2009 Apr; 10():122. PubMed ID: 19393071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying interactions in the time and frequency domains in local and global networks - A Granger Causality Approach.
    Zou C; Ladroue C; Guo S; Feng J
    BMC Bioinformatics; 2010 Jun; 11():337. PubMed ID: 20565962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene network inference using continuous time Bayesian networks: a comparative study and application to Th17 cell differentiation.
    Acerbi E; Zelante T; Narang V; Stella F
    BMC Bioinformatics; 2014 Dec; 15(1):387. PubMed ID: 25495206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian methods in bioinformatics and computational systems biology.
    Wilkinson DJ
    Brief Bioinform; 2007 Mar; 8(2):109-16. PubMed ID: 17430978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sub-space greedy search method for efficient Bayesian Network inference.
    Zhang Q; Cao Y; Li Y; Zhu Y; Sun SS; Guo D
    Comput Biol Med; 2011 Sep; 41(9):763-70. PubMed ID: 21741635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAGA: a hybrid search algorithm for Bayesian Network structure learning of transcriptional regulatory networks.
    Adabor ES; Acquaah-Mensah GK; Oduro FT
    J Biomed Inform; 2015 Feb; 53():27-35. PubMed ID: 25181467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing dynamic changes in the human blood transcriptional network.
    Zhu J; Chen Y; Leonardson AS; Wang K; Lamb JR; Emilsson V; Schadt EE
    PLoS Comput Biol; 2010 Feb; 6(2):e1000671. PubMed ID: 20168994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks.
    Dondelinger F; Mukherjee S
    Methods Mol Biol; 2019; 1883():25-48. PubMed ID: 30547395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discerning Functional Connections in the Pulsed Neural Networks with the Dynamic Bayesian Network Structure Search Method Based on a Genetic Algorithm.
    Dong C; Chen XY; Dong CY
    J Comput Biol; 2019 Nov; 26(11):1243-1252. PubMed ID: 31211610
    [No Abstract]   [Full Text] [Related]  

  • 10. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC; Li CW; Chen BS
    BMC Bioinformatics; 2005 Mar; 6():44. PubMed ID: 15748298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-order dynamic Bayesian Network learning with hidden common causes for causal gene regulatory network.
    Lo LY; Wong ML; Lee KH; Leung KS
    BMC Bioinformatics; 2015 Nov; 16():395. PubMed ID: 26608050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and visualizing uncertainty in gene expression clusters using dirichlet process mixtures.
    Rasmussen CE; de la Cruz BJ; Ghahramani Z; Wild DL
    IEEE/ACM Trans Comput Biol Bioinform; 2009; 6(4):615-28. PubMed ID: 19875860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Windowed Granger causal inference strategy improves discovery of gene regulatory networks.
    Finkle JD; Wu JJ; Bagheri N
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2252-2257. PubMed ID: 29440433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing families of dynamic causal models.
    Penny WD; Stephan KE; Daunizeau J; Rosa MJ; Friston KJ; Schofield TM; Leff AP
    PLoS Comput Biol; 2010 Mar; 6(3):e1000709. PubMed ID: 20300649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse engineering directed gene regulatory networks from transcriptomics and proteomics data of biomining bacterial communities with approximate Bayesian computation and steady-state signalling simulations.
    Buetti-Dinh A; Herold M; Christel S; El Hajjami M; Delogu F; Ilie O; Bellenberg S; Wilmes P; Poetsch A; Sand W; Vera M; Pivkin IV; Friedman R; Dopson M
    BMC Bioinformatics; 2020 Jan; 21(1):23. PubMed ID: 31964336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inference of gene regulatory networks by means of dynamic differential Bayesian networks and nonparametric regression.
    Sugimoto N; Iba H
    Genome Inform; 2004; 15(2):121-30. PubMed ID: 15706498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inference.
    Barnett L; Seth AK
    J Neurosci Methods; 2014 Feb; 223():50-68. PubMed ID: 24200508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.
    Li J; Li X; Su H; Chen H; Galbraith DW
    Bioinformatics; 2006 Aug; 22(16):2037-43. PubMed ID: 16820427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian method for inference of effective connectivity in brain networks for detecting the Mozart effect.
    van Esch RJC; Shi S; Bernas A; Zinger S; Aldenkamp AP; Van den Hof PMJ
    Comput Biol Med; 2020 Dec; 127():104055. PubMed ID: 33157484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pattern-oriented specification of gene network inference processes.
    Trepode NW; de Farias CR; Barrera J
    Comput Biol Med; 2013 Oct; 43(10):1415-27. PubMed ID: 24034733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.