BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 19393322)

  • 1. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI.
    Chang C; Glover GH
    Neuroimage; 2009 Oct; 47(4):1381-93. PubMed ID: 19393322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the end-tidal CO2 response function in the resting-state BOLD fMRI signal: spatial specificity, test-retest reliability and effect of fMRI sampling rate.
    Golestani AM; Chang C; Kwinta JB; Khatamian YB; Jean Chen J
    Neuroimage; 2015 Jan; 104():266-77. PubMed ID: 25462695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Task-related BOLD responses and resting-state functional connectivity during physiological clamping of end-tidal CO(2).
    Madjar C; Gauthier CJ; Bellec P; Birn RM; Brooks JC; Hoge RD
    Neuroimage; 2012 May; 61(1):41-9. PubMed ID: 22418394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing end-tidal CO
    Zvolanek KM; Moia S; Dean JN; Stickland RC; Caballero-Gaudes C; Bright MG
    Neuroimage; 2023 May; 272():120038. PubMed ID: 36958618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of respiratory CO2 fluctuations in the resting-state BOLD signal differ between eyes open and eyes closed.
    Peng T; Niazy R; Payne SJ; Wise RG
    Magn Reson Imaging; 2013 Apr; 31(3):336-45. PubMed ID: 22921940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data.
    Murphy K; Harris AD; Wise RG
    Neuroimage; 2011 Jan; 54(1):369-79. PubMed ID: 20682354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS).
    Frederick Bd; Nickerson LD; Tong Y
    Neuroimage; 2012 Apr; 60(3):1913-23. PubMed ID: 22342801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between end-tidal CO₂ and respiration volume per time for detecting BOLD signal fluctuations during paced hyperventilation.
    Vogt KM; Ibinson JW; Schmalbrock P; Small RH
    Magn Reson Imaging; 2011 Nov; 29(9):1186-94. PubMed ID: 21908130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural underpinning of a respiration-associated resting-state fMRI network.
    Tu W; Zhang N
    Elife; 2022 Oct; 11():. PubMed ID: 36263940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal.
    Thomason ME; Glover GH
    Neuroimage; 2008 Jan; 39(1):206-14. PubMed ID: 17905599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuronal associations of respiratory-volume variability in the resting state.
    Shams S; LeVan P; Chen JJ
    Neuroimage; 2021 Apr; 230():117783. PubMed ID: 33516896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlated slow fluctuations in respiration, EEG, and BOLD fMRI.
    Yuan H; Zotev V; Phillips R; Bodurka J
    Neuroimage; 2013 Oct; 79():81-93. PubMed ID: 23631982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the origin of respiratory artifacts in BOLD-EPI of the human brain.
    Windischberger C; Langenberger H; Sycha T; Tschernko EM; Fuchsjäger-Mayerl G; Schmetterer L; Moser E
    Magn Reson Imaging; 2002 Oct; 20(8):575-82. PubMed ID: 12467863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the effects of independently-controlled end-tidal PCO(2) and PO(2) on blood oxygen level-dependent (BOLD) MRI.
    Prisman E; Slessarev M; Han J; Poublanc J; Mardimae A; Crawley A; Fisher J; Mikulis D
    J Magn Reson Imaging; 2008 Jan; 27(1):185-91. PubMed ID: 18050321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of respiratory measures in young adults scanned at rest, including systematic changes and "missed" deep breaths.
    Power JD; Lynch CJ; Dubin MJ; Silver BM; Martin A; Jones RM
    Neuroimage; 2020 Jan; 204():116234. PubMed ID: 31589990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal.
    Wise RG; Ide K; Poulin MJ; Tracey I
    Neuroimage; 2004 Apr; 21(4):1652-64. PubMed ID: 15050588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical modification to a resting state fMRI protocol for improved characterization of cerebrovascular function.
    Stickland RC; Zvolanek KM; Moia S; Ayyagari A; Caballero-Gaudes C; Bright MG
    Neuroimage; 2021 Oct; 239():118306. PubMed ID: 34175427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing systemic physiological effects on the blood oxygen level dependent signal of resting-state fMRI in time-frequency space using wavelets.
    Lee QN; Chen JE; Wheeler GJ; Fan AP
    Hum Brain Mapp; 2023 Dec; 44(18):6537-6551. PubMed ID: 37950750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults.
    Golestani AM; Wei LL; Chen JJ
    Neuroimage; 2016 Sep; 138():147-163. PubMed ID: 27177763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
    Shmueli K; van Gelderen P; de Zwart JA; Horovitz SG; Fukunaga M; Jansma JM; Duyn JH
    Neuroimage; 2007 Nov; 38(2):306-20. PubMed ID: 17869543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.