BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19393588)

  • 1. Stem cell decision making and critical-like exploratory networks.
    Halley JD; Burden FR; Winkler DA
    Stem Cell Res; 2009 May; 2(3):165-77. PubMed ID: 19393588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-organizing circuitry and emergent computation in mouse embryonic stem cells.
    Halley JD; Smith-Miles K; Winkler DA; Kalkan T; Huang S; Smith A
    Stem Cell Res; 2012 Mar; 8(2):324-33. PubMed ID: 22169460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational strategy for predicting lineage specifiers in stem cell subpopulations.
    Okawa S; del Sol A
    Stem Cell Res; 2015 Sep; 15(2):427-34. PubMed ID: 26368290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network.
    Hosseinpour B; Bakhtiarizadeh MR; Khosravi P; Ebrahimie E
    Gene; 2013 Dec; 531(2):212-9. PubMed ID: 24042128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systems biology approaches to understanding stem cell fate choice.
    Peltier J; Schaffer DV
    IET Syst Biol; 2010 Jan; 4(1):1-11. PubMed ID: 20001088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A conceptual and computational framework for modelling and understanding the non-equilibrium gene regulatory networks of mouse embryonic stem cells.
    Greaves RB; Dietmann S; Smith A; Stepney S; Halley JD
    PLoS Comput Biol; 2017 Sep; 13(9):e1005713. PubMed ID: 28863148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A systems biology approach to identify niche determinants of cellular phenotypes.
    Ravichandran S; Okawa S; Martínez Arbas S; Del Sol A
    Stem Cell Res; 2016 Sep; 17(2):406-412. PubMed ID: 27649532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a Rosetta stone for the stem cell genome: stochastic gene expression, network architecture, and external influences.
    Halley JD; Winkler DA; Burden FR
    Stem Cell Res; 2008 Sep; 1(3):157-68. PubMed ID: 19383397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory networks and epigenetic modifications in cell differentiation.
    Roy S; Kundu TK
    IUBMB Life; 2014 Feb; 66(2):100-9. PubMed ID: 24574067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem cell bioengineering at the interface of systems-based models and high-throughput platforms.
    Underhill GH
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(6):525-45. PubMed ID: 22927218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates.
    Sambasivan R; Gayraud-Morel B; Dumas G; Cimper C; Paisant S; Kelly RG; Tajbakhsh S
    Dev Cell; 2009 Jun; 16(6):810-21. PubMed ID: 19531352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Organizing Global Gene Expression Regulated through Criticality: Mechanism of the Cell-Fate Change.
    Tsuchiya M; Giuliani A; Hashimoto M; Erenpreisa J; Yoshikawa K
    PLoS One; 2016; 11(12):e0167912. PubMed ID: 27997556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene Regulatory Networks from Single Cell Data for Exploring Cell Fate Decisions.
    Chan TE; Stumpf MPH; Babtie AC
    Methods Mol Biol; 2019; 1975():211-238. PubMed ID: 31062312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic chart guiding embryonic stem cell cardiopoiesis.
    Faustino RS; Behfar A; Perez-Terzic C; Terzic A
    Genome Biol; 2008 Jan; 9(1):R6. PubMed ID: 18184438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.
    Ravichandran S; Del Sol A
    FEBS Lett; 2017 Feb; 591(3):560-569. PubMed ID: 28094442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Criticality in cell differentiation.
    Bose I; Pal M
    J Biosci; 2017 Dec; 42(4):683-693. PubMed ID: 29229886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering the cell fate decision in lysis-lysogeny transition and stem cell development via Markov state modeling.
    Li X; Li T; Li C; Li T
    J Chem Phys; 2021 Dec; 155(24):245101. PubMed ID: 34972376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of sequential branching in hierarchical cell fate determination.
    Foster DV; Foster JG; Huang S; Kauffman SA
    J Theor Biol; 2009 Oct; 260(4):589-97. PubMed ID: 19615382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene regulatory network models for floral organ determination.
    Azpeitia E; Davila-Velderrain J; Villarreal C; Alvarez-Buylla ER
    Methods Mol Biol; 2014; 1110():441-69. PubMed ID: 24395275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the attenuation and amplification of molecular noise in genetic regulatory networks.
    Chen BS; Wang YC
    BMC Bioinformatics; 2006 Feb; 7():52. PubMed ID: 16457708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.