These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19393630)

  • 1. Conformational detection of p53's oligomeric state by FlAsH Fluorescence.
    Webber TM; Allen AC; Ma WK; Molloy RG; Kettelkamp CN; Dow CA; Gage MJ
    Biochem Biophys Res Commun; 2009 Jun; 384(1):66-70. PubMed ID: 19393630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability.
    Luwang JW; Nair AR; Natesh R
    Biochimie; 2021 Oct; 189():99-107. PubMed ID: 34197865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different Oligomeric States of the Tumor Suppressor p53 Show Identical Binding Behavior towards the S100β Homodimer.
    Wei AAJ; Iacobucci C; Schultze W; Ihling CH; Arlt C; Sinz A
    Chembiochem; 2022 Jun; 23(11):e202100665. PubMed ID: 35333001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tandem dimerization of the human p53 tetramerization domain stabilizes a primary dimer intermediate and dramatically enhances its oligomeric stability.
    Poon GM; Brokx RD; Sung M; Gariépy J
    J Mol Biol; 2007 Jan; 365(4):1217-31. PubMed ID: 17113101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53.
    Sakaguchi K; Sakamoto H; Lewis MS; Anderson CW; Erickson JW; Appella E; Xie D
    Biochemistry; 1997 Aug; 36(33):10117-24. PubMed ID: 9254608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oligomerization of the tetramerization domain of p53 probed by two- and three-color single-molecule FRET.
    Chung HS; Meng F; Kim JY; McHale K; Gopich IV; Louis JM
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):E6812-E6821. PubMed ID: 28760960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53.
    Rajagopalan S; Huang F; Fersht AR
    Nucleic Acids Res; 2011 Mar; 39(6):2294-303. PubMed ID: 21097469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain.
    D'Abramo M; Bešker N; Desideri A; Levine AJ; Melino G; Chillemi G
    Oncogene; 2016 Jun; 35(25):3272-81. PubMed ID: 26477317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial regulation of p53 function by modulating its assembly.
    Inobe T; Nozaki M; Nukina N
    Biochem Biophys Res Commun; 2015 Nov; 467(2):322-7. PubMed ID: 26454170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers.
    van Dieck J; Fernandez-Fernandez MR; Veprintsev DB; Fersht AR
    J Biol Chem; 2009 May; 284(20):13804-13811. PubMed ID: 19297317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the protein-protein interfaces in the p53-DNA crystal structures: towards elucidation of the biological interface.
    Ma B; Pan Y; Gunasekaran K; Venkataraghavan RB; Levine AJ; Nussinov R
    Proc Natl Acad Sci U S A; 2005 Mar; 102(11):3988-93. PubMed ID: 15738397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of folding and assembly of a small tetrameric protein domain from tumor suppressor p53.
    Mateu MG; Sánchez Del Pino MM; Fersht AR
    Nat Struct Biol; 1999 Feb; 6(2):191-8. PubMed ID: 10048932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A meanfield approach to the thermodynamics of a protein-solvent system with application to the oligomerization of the tumor suppressor p53.
    Noolandi J; Davison TS; Volkel AR; Nie X; Kay C; Arrowsmith CH
    Proc Natl Acad Sci U S A; 2000 Aug; 97(18):9955-60. PubMed ID: 10944184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for allosteric effects on p53 oligomerization induced by phosphorylation.
    Muller P; Chan JM; Simoncik O; Fojta M; Lane DP; Hupp T; Vojtesek B
    Protein Sci; 2018 Feb; 27(2):523-530. PubMed ID: 29124793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A phosphorylation-dependent switch in the disordered p53 transactivation domain regulates DNA binding.
    Sun X; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2021 Jan; 118(1):. PubMed ID: 33443163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis.
    Fischer NW; Prodeus A; Malkin D; Gariépy J
    Cell Cycle; 2016 Dec; 15(23):3210-3219. PubMed ID: 27754743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding of p53 along DNA can be modulated by its oligomeric state and by cross-talks between its constituent domains.
    Khazanov N; Levy Y
    J Mol Biol; 2011 Apr; 408(2):335-55. PubMed ID: 21338609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-dependent sliding kinetics of p53.
    Leith JS; Tafvizi A; Huang F; Uspal WE; Doyle PS; Fersht AR; Mirny LA; van Oijen AM
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16552-7. PubMed ID: 23012405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.