These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19394019)

  • 1. Systematic error in mechanical measures of damage during four-point bending fatigue of cortical bone.
    Landrigan MD; Roeder RK
    J Biomech; 2009 Jun; 42(9):1212-7. PubMed ID: 19394019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-terminal creep damage does not substantially influence fatigue life under physiological loading.
    Stern LC; Brinkman JG; Furmanski J; Rimnac CM; Hernandez CJ
    J Biomech; 2011 Jul; 44(10):1995-8. PubMed ID: 21592481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage rate is a predictor of fatigue life and creep strain rate in tensile fatigue of human cortical bone samples.
    Cotton JR; Winwood K; Zioupos P; Taylor M
    J Biomech Eng; 2005 Apr; 127(2):213-9. PubMed ID: 15971698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive fatigue behavior of bovine trabecular bone.
    Michel MC; Guo XD; Gibson LJ; McMahon TA; Hayes WC
    J Biomech; 1993; 26(4-5):453-63. PubMed ID: 8478349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creep contributes to the fatigue behavior of bovine trabecular bone.
    Bowman SM; Guo XE; Cheng DW; Keaveny TM; Gibson LJ; Hayes WC; McMahon TA
    J Biomech Eng; 1998 Oct; 120(5):647-54. PubMed ID: 10412444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuum damage mechanics (CDM) modelling demonstrates that ligament fatigue damage accumulates by different mechanisms than creep damage.
    Schwab TD; Johnston CR; Oxland TR; Thornton GM
    J Biomech; 2007; 40(14):3279-84. PubMed ID: 17582420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
    Zitnay JL; Lin AH; Weiss JA
    Acta Biomater; 2021 Oct; 134():435-442. PubMed ID: 34314889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Fatigue Damage on the Microscopic Modulus of Cortical Bone Using Nanoindentation.
    Meng X; Qu C; Fu D; Qu C
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34204688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the fatigue behavior of human trabecular and cortical bone tissue.
    Choi K; Goldstein SA
    J Biomech; 1992 Dec; 25(12):1371-81. PubMed ID: 1491015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue.
    Kosmopoulos V; Schizas C; Keller TS
    J Biomech; 2008; 41(3):515-22. PubMed ID: 18076887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creep does not contribute to fatigue in bovine trabecular bone.
    Moore TL; O'Brien FJ; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):321-9. PubMed ID: 15341168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of Poisson's ratio as a damage parameter for bone fatigue.
    Pidaparti RM; Vogt A
    J Biomed Mater Res; 2002 Feb; 59(2):282-7. PubMed ID: 11745564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between damage accumulation and mechanical property degradation in cortical bone: microcrack orientation is important.
    Akkus O; Knott DF; Jepsen KJ; Davy DT; Rimnac CM
    J Biomed Mater Res A; 2003 Jun; 65(4):482-8. PubMed ID: 12761839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tensile and compressive strain evolutions of bovine compact bone under four-point bending fatigue loading.
    Meng X; Qin Q; Qu C
    J Mech Behav Biomed Mater; 2021 Nov; 123():104774. PubMed ID: 34404024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of creep strain during tensile fatigue of cortical bone.
    Cotton JR; Zioupos P; Winwood K; Taylor M
    J Biomech; 2003 Jul; 36(7):943-9. PubMed ID: 12757803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A phenomenological model for predicting fatigue life in bovine trabecular bone.
    Ganguly P; Moore TL; Gibson LJ
    J Biomech Eng; 2004 Jun; 126(3):330-9. PubMed ID: 15341169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.