BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19394071)

  • 1. Simultaneous toxic action of zinc and alachlor resulted in enhancement of zinc uptake by the filamentous fungus Paecilomyces marquandii.
    Słaba M; Szewczyk R; Bernat P; Długoński J
    Sci Total Environ; 2009 Jun; 407(13):4127-33. PubMed ID: 19394071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alachlor oxidation by the filamentous fungus Paecilomyces marquandii.
    Słaba M; Szewczyk R; Piątek MA; Długoński J
    J Hazard Mater; 2013 Oct; 261():443-50. PubMed ID: 23974531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient alachlor degradation by the filamentous fungus Paecilomyces marquandii with simultaneous oxidative stress reduction.
    Słaba M; Różalska S; Bernat P; Szewczyk R; Piątek MA; Długoński J
    Bioresour Technol; 2015 Dec; 197():404-9. PubMed ID: 26356111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism study of alachlor biodegradation by Paecilomyces marquandii with proteomic and metabolomic methods.
    Szewczyk R; Soboń A; Słaba M; Długoński J
    J Hazard Mater; 2015 Jun; 291():52-64. PubMed ID: 25765177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic study of the toxicity of zinc and lead ions to the heavy metals accumulating fungus Paecilomyces marquandii.
    Słaba M; Bizukojć M; Pałecz B; Długoński J
    Bioprocess Biosyst Eng; 2005 Dec; 28(3):185-97. PubMed ID: 16220266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions.
    Nykiel-Szymańska J; Bernat P; Słaba M
    Ecotoxicol Environ Saf; 2018 Oct; 162():1-9. PubMed ID: 29957402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of emulsifier production by Curvularia lunata in cadmium, zinc and lead presence.
    Paraszkiewicz K; Frycie A; Słaba M; Długoński J
    Biometals; 2007 Oct; 20(5):797-805. PubMed ID: 17120141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems.
    Knapp CW; Graham DW; Berardesco G; deNoyelles F; Cutak BJ; Larive CK
    Water Res; 2003 Nov; 37(19):4761-9. PubMed ID: 14568063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.
    Słaba M; Gajewska E; Bernat P; Fornalska M; Długoński J
    Environ Sci Pollut Res Int; 2013 May; 20(5):3423-34. PubMed ID: 23132407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro hepatotoxicity of alachlor and its by-products.
    El-Sakka S; Salem Eel-D; Abdel-Rahman MS
    J Appl Toxicol; 2002; 22(1):31-5. PubMed ID: 11807927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of alachlor and metolachlor on toxicity of chlorpyrifos and major detoxification enzymes in the aquatic midge, Chironomus tentans (Diptera: Chironomidae).
    Jin-Clark Y; Anderson TD; Zhu KY
    Arch Environ Contam Toxicol; 2008 May; 54(4):645-52. PubMed ID: 18026775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of alachlor by soil streptomycetes.
    Durães Sette L; Mendonça Alves Da Costa LA; Marsaioli AJ; Manfio GP
    Appl Microbiol Biotechnol; 2004 Jun; 64(5):712-7. PubMed ID: 14727088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation.
    Ballesteros Martín MM; Sánchez Pérez JA; García Sánchez JL; Montes de Oca L; Casas López JL; Oller I; Malato Rodríguez S
    J Hazard Mater; 2008 Jun; 155(1-2):342-9. PubMed ID: 18162295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioprocess for solubilization of rock phosphate on starch based medium by Paecilomyces marquandii immobilized on polyurethane foam.
    Ahuja A; D'Souza SF
    Appl Biochem Biotechnol; 2009 Jan; 152(1):1-5. PubMed ID: 18785017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytotoxicity of chloroacetanilide herbicide alachlor in HepG2 cells independent of CYP3A4 and CYP3A7.
    Miranda SR; Meyer SA
    Food Chem Toxicol; 2007 May; 45(5):871-7. PubMed ID: 17207564
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.
    Paule A; Roubeix V; Lauga B; Duran R; Delmas F; Paul E; Rols JL
    Aquat Toxicol; 2013 Nov; 144-145():310-21. PubMed ID: 24211795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative cytotoxicity of alachlor, acetochlor, and metolachlor herbicides in isolated rat and cryopreserved human hepatocytes.
    Kale VM; Miranda SR; Wilbanks MS; Meyer SA
    J Biochem Mol Toxicol; 2008 Feb; 22(1):41-50. PubMed ID: 18273908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of metal induced phospholipid modifications in the heavy metal tolerant filamentous fungus Paecilomyces marquandii and implications for the fungal membrane integrity.
    Słaba M; Bernat P; Różalska S; Nykiel J; Długoński J
    Acta Biochim Pol; 2013; 60(4):695-700. PubMed ID: 24432319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity assessment of atrazine, alachlor, and carbofuran and their respective environmental metabolites using Microtox.
    Kross BC; Vergara A; Raue LE
    J Toxicol Environ Health; 1992 Sep; 37(1):149-59. PubMed ID: 1522608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ethane sulfonate metabolite of alachlor: assessment of oncogenic potential based on metabolic and mechanistic considerations.
    Heydens WF; Wilson AG; Kraus LJ; Hopkins WE; Hotz KJ
    Toxicol Sci; 2000 May; 55(1):36-43. PubMed ID: 10788557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.