These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19394107)

  • 41. A hyperelastic finite-element model of human skin for interactive real-time surgical simulation.
    Lapeer RJ; Gasson PD; Karri V
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):1013-22. PubMed ID: 20172812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Comparison between the Range of Movement Canine Real Cervical Spine and Numerical Simulation - Computer Model Validation].
    Srnec R; Horák Z; Sedláček R; Sedlinská M; Krbec M; Nečas A
    Acta Chir Orthop Traumatol Cech; 2017; 84(2):133-137. PubMed ID: 28809631
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of thin-plate spline transformations to finite element models, or, how to turn a bog turtle into a spotted turtle to analyze both.
    Stayton CT
    Evolution; 2009 May; 63(5):1348-55. PubMed ID: 19222567
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mesh development for a finite element model of the carotid artery.
    Gayzik FS; Tan JC; Duma SM; Stitzel JD
    Biomed Sci Instrum; 2006; 42():187-92. PubMed ID: 16817606
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [MOTRICO project: the mesh generation problem of the human left coronary artery bifurcation].
    Serón FJ; García E; del Pico J
    Acta Cient Venez; 2003; 54(1):28-35. PubMed ID: 14515764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A numerical investigation of factors affecting cervical spine injuries during rollover crashes.
    Hu J; Yang KH; Chou CC; King AI
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2529-35. PubMed ID: 18978594
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tetrahedral versus hexahedral finite elements in numerical modelling of the proximal femur.
    Ramos A; Simões JA
    Med Eng Phys; 2006 Nov; 28(9):916-24. PubMed ID: 16464628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Semi-analytical finite element analysis of elastic waveguides subjected to axial loads.
    Loveday PW
    Ultrasonics; 2009 Mar; 49(3):298-300. PubMed ID: 19108858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns.
    Laville A; Laporte S; Skalli W
    J Biomech; 2009 Jul; 42(10):1409-1415. PubMed ID: 19442980
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis.
    Jones AC; Wilcox RK
    Med Eng Phys; 2008 Dec; 30(10):1287-304. PubMed ID: 18986824
    [TBL] [Abstract][Full Text] [Related]  

  • 52. IA-FEMesh: an open-source, interactive, multiblock approach to anatomic finite element model development.
    Grosland NM; Shivanna KH; Magnotta VA; Kallemeyn NA; DeVries NA; Tadepalli SC; Lisle C
    Comput Methods Programs Biomed; 2009 Apr; 94(1):96-107. PubMed ID: 19157630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numeric simulation of time-dependent remodeling of bone around loaded oral implants.
    Eser A; Tonuk E; Akca K; Cehreli MC
    Int J Oral Maxillofac Implants; 2009; 24(4):597-608. PubMed ID: 19885399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward integration of geometric morphometrics and computational biomechanics: new methods for 3D virtual reconstruction and quantitative analysis of Finite Element Models.
    Parr WC; Wroe S; Chamoli U; Richards HS; McCurry MR; Clausen PD; McHenry C
    J Theor Biol; 2012 May; 301():1-14. PubMed ID: 22342680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Finite element modelling of forearm skin wrinkling.
    Flynn C; McCormack BA
    Skin Res Technol; 2008 Aug; 14(3):261-9. PubMed ID: 19159370
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Straightened cervical lordosis causes stress concentration: a finite element model study.
    Wei W; Liao S; Shi S; Fei J; Wang Y; Chen C
    Australas Phys Eng Sci Med; 2013 Mar; 36(1):27-33. PubMed ID: 23355324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vibration modes of injured spine at resonant frequencies under vertical vibration.
    Guo LX; Zhang M; Zhang YM; Teo EC
    Spine (Phila Pa 1976); 2009 Sep; 34(19):E682-8. PubMed ID: 19730200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Finite element applications in human cervical spine modeling.
    Yoganandan N; Kumaresan S; Voo L; Pintar FA
    Spine (Phila Pa 1976); 1996 Aug; 21(15):1824-34. PubMed ID: 8855470
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.