These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19394272)

  • 1. Neuro-exocytosis: botulinum toxins as inhibitory probes and versatile therapeutics.
    Dolly JO; Lawrence GW; Meng J; Wang J; Ovsepian SV
    Curr Opin Pharmacol; 2009 Jun; 9(3):326-35. PubMed ID: 19394272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.
    Meng J; Wang J; Lawrence G; Dolly JO
    J Cell Sci; 2007 Aug; 120(Pt 16):2864-74. PubMed ID: 17666428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators.
    Dolly JO; Wang J; Zurawski TH; Meng J
    FEBS J; 2011 Dec; 278(23):4454-66. PubMed ID: 21645262
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanisms of action of botulinum toxins and neurotoxins].
    Poulain B; Lonchamp E; Jover E; Popoff MR; Molgó J
    Ann Dermatol Venereol; 2009 May; 136 Suppl 4():S73-6. PubMed ID: 19576489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-dependent changes in partial VAMP complexes during neurotransmitter release.
    Hua SY; Charlton MP
    Nat Neurosci; 1999 Dec; 2(12):1078-83. PubMed ID: 10570484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotherapeutics to inhibit exocytosis from sensory neurons for the control of chronic pain.
    Dolly JO; O'Connell MA
    Curr Opin Pharmacol; 2012 Feb; 12(1):100-8. PubMed ID: 22188874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of botulinum neurotoxin type D light chain at 1.65 A resolution: repercussions for VAMP-2 substrate specificity.
    Arndt JW; Chai Q; Christian T; Stevens RC
    Biochemistry; 2006 Mar; 45(10):3255-62. PubMed ID: 16519520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A botulinum neurotoxin-like function of Potentilla chinensis extract that inhibits neuronal SNARE complex formation, membrane fusion, neuroexocytosis, and muscle contraction.
    Jung CH; Choi JK; Yang Y; Koh HJ; Heo P; Yoon KJ; Kim S; Park WS; Shing HJ; Kweon DH
    Pharm Biol; 2012 Sep; 50(9):1157-67. PubMed ID: 22881141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release.
    Rizo J; Chen X; Araç D
    Trends Cell Biol; 2006 Jul; 16(7):339-50. PubMed ID: 16698267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of SNAREs that mediate zymogen granule exocytosis.
    Pickett JA; Campos-Toimil M; Thomas P; Edwardson JM
    Biochem Biophys Res Commun; 2007 Aug; 359(3):599-603. PubMed ID: 17544372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with the long lasting type A. Basis for distinct durations of inhibition of exocytosis in central neurons.
    Foran PG; Mohammed N; Lisk GO; Nagwaney S; Lawrence GW; Johnson E; Smith L; Aoki KR; Dolly JO
    J Biol Chem; 2003 Jan; 278(2):1363-71. PubMed ID: 12381720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of SNARE-driven neuroexocytosis by plant extracts.
    Jung CH; Yang YS; Kim JS; Shin YK; Hwang JS; Son ED; Lee HH; Chung KM; Oh JM; Lee JH; Kweon DH
    Biotechnol Lett; 2009 Mar; 31(3):361-9. PubMed ID: 19023663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of exocytotic protein expression and Ca2+-dependent peptide secretion in astrocytes.
    Paco S; Margelí MA; Olkkonen VM; Imai A; Blasi J; Fischer-Colbrie R; Aguado F
    J Neurochem; 2009 Jul; 110(1):143-56. PubMed ID: 19594665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins.
    Dolly O
    Headache; 2003; 43 Suppl 1():S16-24. PubMed ID: 12887390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered botulinum neurotoxins as new therapeutics.
    Masuyer G; Chaddock JA; Foster KA; Acharya KR
    Annu Rev Pharmacol Toxicol; 2014; 54():27-51. PubMed ID: 24016211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotransmitter release from semi-intact synaptosomes.
    Tandon A; Tan PK; Bannykh S; Banerjee A; Balch WE
    Methods; 1998 Oct; 16(2):198-203. PubMed ID: 9790866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current status and future directions of botulinum neurotoxins for targeting pain processing.
    Pellett S; Yaksh TL; Ramachandran R
    Toxins (Basel); 2015 Nov; 7(11):4519-63. PubMed ID: 26556371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes.
    de Wit H; Walter AM; Milosevic I; Gulyás-Kovács A; Riedel D; Sørensen JB; Verhage M
    Cell; 2009 Sep; 138(5):935-46. PubMed ID: 19716167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acrosomal exocytosis, a special type of regulated secretion.
    Mayorga LS; Tomes CN; Belmonte SA
    IUBMB Life; 2007; 59(4-5):286-92. PubMed ID: 17505967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexins living up to their name--new light on their role in exocytosis.
    Stein A; Jahn R
    Neuron; 2009 Nov; 64(3):295-7. PubMed ID: 19914176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.