BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 19394291)

  • 1. Protein phosphorylation goes negative.
    Pawson T; Taylor L
    Mol Cell; 2009 Apr; 34(2):139-40. PubMed ID: 19394291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of B-RAF in melanoma.
    Gray-Schopfer VC; da Rocha Dias S; Marais R
    Cancer Metastasis Rev; 2005 Jan; 24(1):165-83. PubMed ID: 15785879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells.
    Rush J; Moritz A; Lee KA; Guo A; Goss VL; Spek EJ; Zhang H; Zha XM; Polakiewicz RD; Comb MJ
    Nat Biotechnol; 2005 Jan; 23(1):94-101. PubMed ID: 15592455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coexpression of major histocompatibility complex class II with chemokines and nuclear NFkappaB p50 in melanoma: a rational for their association with poor prognosis.
    Martins I; Sylla K; Deshayes F; Lauriol J; Ghislin S; Dieu-Nosjean MC; Viguier M; Verola O; Charron D; Alcaide-Loridan C; Al-Daccak R
    Melanoma Res; 2009 Aug; 19(4):226-37. PubMed ID: 19574933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The new arms race against melanoma.
    Lejeune FJ
    Melanoma Res; 2006 Feb; 16(1):1-2. PubMed ID: 16432449
    [No Abstract]   [Full Text] [Related]  

  • 6. Functional proteomics identifies targets of phosphorylation by B-Raf signaling in melanoma.
    Old WM; Shabb JB; Houel S; Wang H; Couts KL; Yen CY; Litman ES; Croy CH; Meyer-Arendt K; Miranda JG; Brown RA; Witze ES; Schweppe RE; Resing KA; Ahn NG
    Mol Cell; 2009 Apr; 34(1):115-31. PubMed ID: 19362540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein phosphorylation in irradiated human melanoma cells.
    Warters RL; Williams DL; Zhuplatov SB; Pond CD; Leachman SA
    Radiat Res; 2007 Nov; 168(5):535-44. PubMed ID: 17973544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ludwig institute for cancer research Melbourne melanoma cell line panel.
    Behren A; Anaka M; Lo PH; Vella LJ; Davis ID; Catimel J; Cardwell T; Gedye C; Hudson C; Stan R; Cebon J
    Pigment Cell Melanoma Res; 2013 Jul; 26(4):597-600. PubMed ID: 23527996
    [No Abstract]   [Full Text] [Related]  

  • 9. Phosphoproteomic analysis of distinct tumor cell lines in response to nocodazole treatment.
    Nagano K; Shinkawa T; Mutoh H; Kondoh O; Morimoto S; Inomata N; Ashihara M; Ishii N; Aoki Y; Haramura M
    Proteomics; 2009 May; 9(10):2861-74. PubMed ID: 19415658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taking the stress out of melanoma.
    Martin MJ; Carling D; Marais R
    Cancer Cell; 2009 Mar; 15(3):163-4. PubMed ID: 19249673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Signal transduction in melanoma].
    Yokoyama S
    Seikagaku; 2013 Jun; 85(6):469-74. PubMed ID: 23875475
    [No Abstract]   [Full Text] [Related]  

  • 12. Building the perfect beast: complex mouse models teach surprisingly simple melanoma lessons.
    Merlino G
    Pigment Cell Melanoma Res; 2009 Jun; 22(3):246-7. PubMed ID: 19397758
    [No Abstract]   [Full Text] [Related]  

  • 13. A Notch for noncoding RNA in melanoma.
    Garraway LA
    N Engl J Med; 2014 May; 370(20):1950-1. PubMed ID: 24827041
    [No Abstract]   [Full Text] [Related]  

  • 14. Solid tumor proteome and phosphoproteome analysis by high resolution mass spectrometry.
    Zanivan S; Gnad F; Wickström SA; Geiger T; Macek B; Cox J; Fässler R; Mann M
    J Proteome Res; 2008 Dec; 7(12):5314-26. PubMed ID: 19367708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry.
    Schulz DM; Böllner C; Thomas G; Atkinson M; Esposito I; Höfler H; Aubele M
    J Proteome Res; 2009 Jul; 8(7):3430-8. PubMed ID: 19485423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoproteomics--finally fulfilling the promise?
    Rogers LD; Foster LJ
    Mol Biosyst; 2009 Oct; 5(10):1122-9. PubMed ID: 19756301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpressing PKIB in prostate cancer promotes its aggressiveness by linking between PKA and Akt pathways.
    Chung S; Furihata M; Tamura K; Uemura M; Daigo Y; Nasu Y; Miki T; Shuin T; Fujioka T; Nakamura Y; Nakagawa H
    Oncogene; 2009 Aug; 28(32):2849-59. PubMed ID: 19483721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presto change-o: the epithelial-mesenchymal transition.
    Cassiday L
    J Proteome Res; 2009 Jan; 8(1):2. PubMed ID: 19118446
    [No Abstract]   [Full Text] [Related]  

  • 19. Targeted quantitative mass spectrometric identification of differentially expressed proteins between Bax-expressing and deficient colorectal carcinoma cells.
    Wang P; Lo A; Young JB; Song JH; Lai R; Kneteman NM; Hao C; Li L
    J Proteome Res; 2009 Jul; 8(7):3403-14. PubMed ID: 19425606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic Ras, but not (V600E)B-RAF, protects from cholesterol depletion-induced apoptosis through the PI3K/AKT pathway in colorectal cancer cells.
    Calleros L; Sánchez-Hernández I; Baquero P; Toro MJ; Chiloeches A
    Carcinogenesis; 2009 Oct; 30(10):1670-7. PubMed ID: 19700418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.