These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 19394363)

  • 21. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Do not waste your electrodes-principles of optimal electrode geometry for spike sorting.
    Tóth R; Miklós Barth A; Domonkos A; Varga V; Somogyvári Z
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34181590
    [No Abstract]   [Full Text] [Related]  

  • 24. Automatic spike sorting for high-density microelectrode arrays.
    Diggelmann R; Fiscella M; Hierlemann A; Franke F
    J Neurophysiol; 2018 Dec; 120(6):3155-3171. PubMed ID: 30207864
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expert-like performance of an autonomous spike tracking algorithm in isolating and maintaining single units in the macaque cortex.
    Chakrabarti S; Hebert P; Wolf MT; Campos M; Burdick JW; Gail A
    J Neurosci Methods; 2012 Mar; 205(1):72-85. PubMed ID: 22227443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrical stimulus artifact cancellation and neural spike detection on large multi-electrode arrays.
    Mena GE; Grosberg LE; Madugula S; Hottowy P; Litke A; Cunningham J; Chichilnisky EJ; Paninski L
    PLoS Comput Biol; 2017 Nov; 13(11):e1005842. PubMed ID: 29131818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of neural energy in microelectrode signals.
    Gaumond RP; Clement R; Silva R; Sander D
    J Neural Eng; 2004 Sep; 1(3):127-34. PubMed ID: 15876631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Applicability of independent component analysis on high-density microelectrode array recordings.
    Jäckel D; Frey U; Fiscella M; Franke F; Hierlemann A
    J Neurophysiol; 2012 Jul; 108(1):334-48. PubMed ID: 22490552
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SpikeDeep-classifier: a deep-learning based fully automatic offline spike sorting algorithm.
    Saif-Ur-Rehman M; Ali O; Dyck S; Lienkämper R; Metzler M; Parpaley Y; Wellmer J; Liu C; Lee B; Kellis S; Andersen R; Iossifidis I; Glasmachers T; Klaes C
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33166944
    [No Abstract]   [Full Text] [Related]  

  • 31. An unsupervised method for on-chip neural spike detection in multi-electrode recording systems.
    Dragas J; Jäckel D; Franke F; Hierlemann A
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2535-8. PubMed ID: 24110243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Signal processing methods for reducing artifacts in microelectrode brain recordings caused by functional electrical stimulation.
    Young D; Willett F; Memberg WD; Murphy B; Walter B; Sweet J; Miller J; Hochberg LR; Kirsch RF; Ajiboye AB
    J Neural Eng; 2018 Apr; 15(2):026014. PubMed ID: 29199642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spike detection from noisy neural data in linear-probe recordings.
    Takekawa T; Ota K; Murayama M; Fukai T
    Eur J Neurosci; 2014 Jun; 39(11):1943-50. PubMed ID: 24827558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single unit recording capabilities of a 100 microelectrode array.
    Nordhausen CT; Maynard EM; Normann RA
    Brain Res; 1996 Jul; 726(1-2):129-40. PubMed ID: 8836553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A method for spike sorting and detection based on wavelet packets and Shannon's mutual information.
    Hulata E; Segev R; Ben-Jacob E
    J Neurosci Methods; 2002 May; 117(1):1-12. PubMed ID: 12084559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recording from defined populations of retinal ganglion cells using a high-density CMOS-integrated microelectrode array with real-time switchable electrode selection.
    Fiscella M; Farrow K; Jones IL; Jäckel D; Müller J; Frey U; Bakkum DJ; Hantz P; Roska B; Hierlemann A
    J Neurosci Methods; 2012 Oct; 211(1):103-13. PubMed ID: 22939921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.