These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 19394409)

  • 1. Verdoheme formation in Proteus mirabilis catalase.
    Andreoletti P; Mouesca JM; Gouet P; Jaquinod M; Capeillère-Blandin C; Jouve HM
    Biochim Biophys Acta; 2009 Aug; 1790(8):741-53. PubMed ID: 19394409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of a tyrosyl radical intermediate in Proteus mirabilis catalase by directed mutagenesis and consequences for nucleotide reactivity.
    Andreoletti P; Gambarelli S; Sainz G; Stojanoff V; White C; Desfonds G; Gagnon J; Gaillard J; Jouve HM
    Biochemistry; 2001 Nov; 40(45):13734-43. PubMed ID: 11695923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferryl intermediates of catalase captured by time-resolved Weissenberg crystallography and UV-VIS spectroscopy.
    Gouet P; Jouve HM; Williams PA; Andersson I; Andreoletti P; Nussaume L; Hajdu J
    Nat Struct Biol; 1996 Nov; 3(11):951-6. PubMed ID: 8901874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution structure and biochemical properties of a recombinant Proteus mirabilis catalase depleted in iron.
    Andreoletti P; Sainz G; Jaquinod M; Gagnon J; Jouve HM
    Proteins; 2003 Feb; 50(2):261-71. PubMed ID: 12486720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulations of electron transfer in the NADPH-bound catalase from Proteus mirabilis PR.
    Bicout DJ; Field MJ; Gouet P; Jouve HM
    Biochim Biophys Acta; 1995 Sep; 1252(1):172-6. PubMed ID: 7548161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupled oxidation vs heme oxygenation: insights from axial ligand mutants of mitochondrial cytochrome b5.
    Avila L; Huang HW; Damaso CO; Lu S; Moënne-Loccoz P; Rivera M
    J Am Chem Soc; 2003 Apr; 125(14):4103-10. PubMed ID: 12670231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural studies of Proteus mirabilis catalase in its ground state, oxidized state and in complex with formic acid.
    Andreoletti P; Pernoud A; Sainz G; Gouet P; Jouve HM
    Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2163-8. PubMed ID: 14646074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme.
    Unno M; Matsui T; Ikeda-Saito M
    J Inorg Biochem; 2012 Aug; 113():102-9. PubMed ID: 22673156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of compound I in hemoproteins: study on Proteus mirabilis catalase.
    Jouve HM; Andreoletti P; Gouet P; Hajdu J; Gagnon J
    Biochimie; 1997 Nov; 79(11):667-71. PubMed ID: 9479449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of Proteus mirabilis PR catalase with and without bound NADPH.
    Gouet P; Jouve HM; Dideberg O
    J Mol Biol; 1995 Jun; 249(5):933-54. PubMed ID: 7791219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates.
    Ivancich A; Jouve HM; Sartor B; Gaillard J
    Biochemistry; 1997 Aug; 36(31):9356-64. PubMed ID: 9235978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupled oxidation of heme covalently attached to cytochrome b562 yields a novel biliprotein.
    Rice JK; Fearnley IM; Barker PD
    Biochemistry; 1999 Dec; 38(51):16847-56. PubMed ID: 10606518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O(2)- and H(2)O(2)-dependent verdoheme degradation by heme oxygenase: reaction mechanisms and potential physiological roles of the dual pathway degradation.
    Matsui T; Nakajima A; Fujii H; Matera KM; Migita CT; Yoshida T; Ikeda-Saito M
    J Biol Chem; 2005 Nov; 280(44):36833-40. PubMed ID: 16115896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete amino acid sequence of Proteus mirabilis PR catalase. Occurrence of a methionine sulfone in the close proximity of the active site.
    Buzy A; Bracchi V; Sterjiades R; Chroboczek J; Thibault P; Gagnon J; Jouve HM; Hudry-Clergeon G
    J Protein Chem; 1995 Feb; 14(2):59-72. PubMed ID: 7786407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the functional role of a water molecule in clade 3 catalases: a proposal for the mechanism by which NADPH prevents the formation of compound II.
    Sicking W; Korth HG; de Groot H; Sustmann R
    J Am Chem Soc; 2008 Jun; 130(23):7345-56. PubMed ID: 18479132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavonoid-induced conversion of catalase to its inactive form--Compound II.
    Krych J; Gebicki JL; Gebicka L
    Free Radic Res; 2014 Nov; 48(11):1334-41. PubMed ID: 25111015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of ferrous and ferrous-NO forms of verdoheme in a complex with human heme oxygenase-1: catalytic implications for heme cleavage.
    Lad L; Ortiz de Montellano PR; Poulos TL
    J Inorg Biochem; 2004 Nov; 98(11):1686-95. PubMed ID: 15522396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin.
    Zhang X; Fujii H; Matera KM; Migita CT; Sun D; Sato M; Ikeda-Saito M; Yoshida T
    Biochemistry; 2003 Jun; 42(24):7418-26. PubMed ID: 12809497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study.
    Lai W; Chen H; Matsui T; Omori K; Unno M; Ikeda-Saito M; Shaik S
    J Am Chem Soc; 2010 Sep; 132(37):12960-70. PubMed ID: 20806922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic description of an unusual protonated ferryl species in the catalase from Proteus mirabilis and density functional theory calculations on related models. Consequences for the ferryl protonation state in catalase, peroxidase and chloroperoxidase.
    Horner O; Mouesca JM; Solari PL; Orio M; Oddou JL; Bonville P; Jouve HM
    J Biol Inorg Chem; 2007 May; 12(4):509-25. PubMed ID: 17237942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.