These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19394410)

  • 21. Scaling down motor memories: de-adaptation after motor learning.
    Davidson PR; Wolpert DM
    Neurosci Lett; 2004 Nov; 370(2-3):102-7. PubMed ID: 15488303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gait-dependent motor memory facilitation in covert movement execution.
    Courtine G; Papaxanthis C; Gentili R; Pozzo T
    Brain Res Cogn Brain Res; 2004 Dec; 22(1):67-75. PubMed ID: 15561502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues.
    Brass M; Bekkering H; Wohlschläger A; Prinz W
    Brain Cogn; 2000 Nov; 44(2):124-43. PubMed ID: 11041986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experience-based priming of body parts: a study of action imitation.
    Gillmeister H; Catmur C; Liepelt R; Brass M; Heyes C
    Brain Res; 2008 Jun; 1217():157-70. PubMed ID: 18502404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of finger-tapping movement.
    Jobbágy A; Harcos P; Karoly R; Fazekas G
    J Neurosci Methods; 2005 Jan; 141(1):29-39. PubMed ID: 15585286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The specificity of memory for a highly trained finger movement sequence: Change the ending, change all.
    Rozanov S; Keren O; Karni A
    Brain Res; 2010 May; 1331():80-7. PubMed ID: 20298683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acquisition of the temporal and ordinal structure of movement sequences in incidental learning.
    O'Reilly JX; McCarthy KJ; Capizzi M; Nobre AC
    J Neurophysiol; 2008 May; 99(5):2731-5. PubMed ID: 18322005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective increase in corticospinal excitability in the context of tactile exploration.
    Oliver P; Tremblay F
    Somatosens Mot Res; 2009 Jun; 26(2):64-73. PubMed ID: 19697263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning from demonstrations: the role of visual search during observational learning from video and point-light models.
    Horn RR; Williams AM; Scott MA
    J Sports Sci; 2002 Mar; 20(3):253-69. PubMed ID: 11999480
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contributions of online visual feedback to the learning and generalization of novel finger coordination patterns.
    Liu X; Scheidt RA
    J Neurophysiol; 2008 May; 99(5):2546-57. PubMed ID: 18353914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical activation during finger tracking vs. ankle tracking in healthy subjects.
    LaPointe KE; Klein JA; Konkol ML; Kveno SM; Bhatt E; DiFabio RP; Carey JR
    Restor Neurol Neurosci; 2009; 27(4):253-264. PubMed ID: 19813287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity in primary motor cortex during action observation covaries with subsequent behavioral changes in execution.
    Aridan N; Mukamel R
    Brain Behav; 2016 Nov; 6(11):e00550. PubMed ID: 27843700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. End-point focus manipulations to determine what information is used during observational learning.
    Hayes SJ; Hodges NJ; Huys R; Mark Williams A
    Acta Psychol (Amst); 2007 Oct; 126(2):120-37. PubMed ID: 17204236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. How similar are motor imagery and movement?
    Rodriguez M; Llanos C; Gonzalez S; Sabate M
    Behav Neurosci; 2008 Aug; 122(4):910-6. PubMed ID: 18729644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases.
    Fernández-Seara MA; Aznárez-Sanado M; Mengual E; Loayza FR; Pastor MA
    Neuroimage; 2009 Oct; 47(4):1797-808. PubMed ID: 19481611
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for model-based action planning in a sequential finger movement task.
    Fermin A; Yoshida T; Ito M; Yoshimoto J; Doya K
    J Mot Behav; 2010 Nov; 42(6):371-9. PubMed ID: 21184355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effector-dependent learning by observation of a finger movement sequence.
    Bird G; Heyes C
    J Exp Psychol Hum Percept Perform; 2005 Apr; 31(2):262-75. PubMed ID: 15826229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissociable contributions of motor-execution and action-observation to intermanual transfer.
    Hayes SJ; Andrew M; Elliott D; Roberts JW; Bennett SJ
    Neurosci Lett; 2012 Jan; 506(2):346-50. PubMed ID: 22155050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes in electroencephalographic activity during observation, preparation, and execution of a motor learning task.
    Nakano H; Osumi M; Ueta K; Kodama T; Morioka S
    Int J Neurosci; 2013 Dec; 123(12):866-75. PubMed ID: 23768018
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of instruction on the acquisition of sequence knowledge in a sensorimotor task.
    Kirsch W; Hoffmann J
    Acta Psychol (Amst); 2011 Sep; 138(1):85-91. PubMed ID: 21641564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.