These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 19394754)

  • 21. Imaging with concave large-aperture therapeutic ultrasound arrays using conventional synthetic-aperture beamforming.
    Wan Y; Ebbini ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1705-18. PubMed ID: 18986915
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chirp-encoded excitation for dual-frequency ultrasound tissue harmonic imaging.
    Shen CC; Lin CH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Nov; 59(11):2420-30. PubMed ID: 23192805
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplitude modulated chirp excitation to reduce grating lobes and maintain ultrasound intensity at the focus of an array.
    Karunakaran CP; Oelze ML
    Ultrasonics; 2013 Sep; 53(7):1293-303. PubMed ID: 23648212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-side access, isotropic resolution, and multispectral three-dimensional photoacoustic imaging with rotate-translate scanning of ultrasonic detector array.
    Gateau J; Gesnik M; Chassot JM; Bossy E
    J Biomed Opt; 2015 May; 20(5):56004. PubMed ID: 25970085
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A digital annular array prototype scanner for realtime ultrasound imaging.
    Foster FS; Larson JD; Pittaro RJ; Corl PD; Greenstein AP; Lum PK
    Ultrasound Med Biol; 1989; 15(7):661-72. PubMed ID: 2683292
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chirp imaging vibro-acoustography for removing the ultrasound standing wave artifact.
    Mitri FG; Greenleaf JF; Fatemi M
    IEEE Trans Med Imaging; 2005 Oct; 24(10):1249-55. PubMed ID: 16229412
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Wideband linear power amplifier for high-frequency ultrasonic coded excitation imaging.
    Park J; Hu C; Li X; Zhou Q; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):825-32. PubMed ID: 22547294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 35 MHz/105 MHz Dual-Element Focused Transducer for Intravascular Ultrasound Tissue Imaging Using the Third Harmonic.
    Lee J; Moon JY; Chang JH
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimizing frequency and pulse shape for ultrasound current source density imaging.
    Qin Y; Wang Z; Ingram P; Li Q; Witte RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2149-55. PubMed ID: 23143565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput, high-frequency 3-D ultrasound for in utero analysis of embryonic mouse brain development.
    Aristizábal O; Mamou J; Ketterling JA; Turnbull DH
    Ultrasound Med Biol; 2013 Dec; 39(12):2321-32. PubMed ID: 24035625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accuracy of in-vitro volume estimation of small structures using three-dimensional ultrasound.
    Berg S; Torp H; Blaas HG
    Ultrasound Med Biol; 2000 Mar; 26(3):425-32. PubMed ID: 10773373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volumetric real-time imaging using a CMUT ring array.
    Choe JW; Oralkan Ö; Nikoozadeh A; Gencel M; Stephens DN; O'Donnell M; Sahn DJ; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1201-11. PubMed ID: 22718870
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.
    Park J; Hu C; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2620-30. PubMed ID: 23443698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual-Element Intravascular Ultrasound Transducer for Tissue Harmonic Imaging and Frequency Compounding: Development and Imaging Performance Assessment.
    Lee J; Chang JH
    IEEE Trans Biomed Eng; 2019 Nov; 66(11):3146-3155. PubMed ID: 30835204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A flexible annular-array imaging platform for micro-ultrasound.
    Qiu W; Yu Y; Chabok HR; Liu C; Tsang FK; Zhou Q; Shung KK; Zheng H; Sun L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):178-86. PubMed ID: 23287923
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improved high-resolution ultrasonic imaging of the eye.
    Silverman RH; Ketterling JA; Mamou J; Coleman DJ
    Arch Ophthalmol; 2008 Jan; 126(1):94-7. PubMed ID: 18195224
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined chirp coded tissue harmonic and fundamental ultrasound imaging for intravascular ultrasound: 20-60 MHz phantom and ex vivo results.
    Park J; Li X; Zhou Q; Shung KK
    Ultrasonics; 2013 Feb; 53(2):369-76. PubMed ID: 22871273
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved evaluation of backscatter characteristics of soft tissue using high-frequency annular array.
    Mizoguchi T; Yoshida K; Mamou J; Ketterling JA; Yamaguchi T
    Jpn J Appl Phys (2008); 2020 Jul; 59(SK):. PubMed ID: 34744182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design and Construction of a Low-Frequency Ultrasound Acquisition Device for 2-D Brain Imaging Using Full-Waveform Inversion.
    Cudeiro-Blanco J; Cueto C; Bates O; Strong G; Robins T; Toulemonde M; Warner M; Tang MX; Agudo OC; Guasch L
    Ultrasound Med Biol; 2022 Oct; 48(10):1995-2008. PubMed ID: 35902276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.