BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 19394900)

  • 1. Real-time detection of cofactor availability in genetically modified living Saccharomyces cerevisiae cells--simultaneous probing of different geno- and phenotypes.
    Kostesha N; Heiskanen A; Spégel C; Hahn-Hägerdal B; Gorwa-Grauslund MF; Emnéus J
    Bioelectrochemistry; 2009 Sep; 76(1-2):180-8. PubMed ID: 19394900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mediator-assisted simultaneous probing of cytosolic and mitochondrial redox activity in living cells.
    Heiskanen A; Spégel C; Kostesha N; Lindahl S; Ruzgas T; Emnéus J
    Anal Biochem; 2009 Jan; 384(1):11-9. PubMed ID: 18812160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical probing of in vivo 5-hydroxymethyl furfural reduction in Saccharomyces cerevisiae.
    Kostesha NV; Almeida JR; Heiskanen AR; Gorwa-Grauslund MF; Hahn-Hägerdal B; Emnéus J
    Anal Chem; 2009 Dec; 81(24):9896-901. PubMed ID: 19925001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical insights into the ethanol tolerance of Saccharomyces cerevisiae.
    Wang M; Zhao J; Yang Z; Du Z; Yang Z
    Bioelectrochemistry; 2007 Nov; 71(2):107-12. PubMed ID: 17499559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioelectrochemical probing of intracellular redox processes in living yeast cells--application of redox polymer wiring in a microfluidic environment.
    Heiskanen A; Coman V; Kostesha N; Sabourin D; Haslett N; Baronian K; Gorton L; Dufva M; Emnéus J
    Anal Bioanal Chem; 2013 Apr; 405(11):3847-58. PubMed ID: 23371527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose utilization of strains lacking PGI1 and expressing a transhydrogenase suggests differences in the pentose phosphate capacity among Saccharomyces cerevisiae strains.
    Heux S; Cadiere A; Dequin S
    FEMS Yeast Res; 2008 Mar; 8(2):217-24. PubMed ID: 18036177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amperometric response from the glycolytic versus the pentose phosphate pathway in Saccharomyces cerevisiae cells.
    Spégel CF; Heiskanen AR; Kostesha N; Johanson TH; Gorwa-Grauslund MF; Koudelka-Hep M; Emnéus J; Ruzgas T
    Anal Chem; 2007 Dec; 79(23):8919-26. PubMed ID: 17973460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring of Saccharomyces cerevisiae cell proliferation on thiol-modified planar gold microelectrodes using impedance spectroscopy.
    Heiskanen AR; Spégel CF; Kostesha N; Ruzgas T; Emnéus J
    Langmuir; 2008 Aug; 24(16):9066-73. PubMed ID: 18630975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of two distinct substrate-dependent catabolic responses in yeast cells using a mediated electrochemical method.
    Baronian KH; Downard AJ; Lowen RK; Pasco N
    Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):108-13. PubMed ID: 12382050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and genetic studies on the function of, and relationship between, the PGI1- and CDC30-encoded phosphoglucose isomerases in Saccharomyces cerevisiae.
    Dickinson JR
    J Gen Microbiol; 1991 Apr; 137(4):765-70. PubMed ID: 1856676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from D-glucose.
    Rao Z; Ma Z; Shen W; Fang H; Zhuge J; Wang X
    J Appl Microbiol; 2008 Dec; 105(6):1768-76. PubMed ID: 19120627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microplate-based method for real-time monitoring of Saccharomyces cerevisiae viability.
    Ye YR; Ye ML; Li LL; Lin Y
    Anal Biochem; 2010 Oct; 405(1):144-6. PubMed ID: 20494644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous monitoring of ascorbate transport through neuroblastoma cells with a ruthenium oxide hexacyanoferrate modified microelectrode.
    Paixão TR; Barbosa LF; Carrì MT; Medeiros MH; Bertotti M
    Analyst; 2008 Nov; 133(11):1605-10. PubMed ID: 18936840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ETP1/YHL010c is a novel gene needed for the adaptation of Saccharomyces cerevisiae to ethanol.
    Snowdon C; Schierholtz R; Poliszczuk P; Hughes S; van der Merwe G
    FEMS Yeast Res; 2009 May; 9(3):372-80. PubMed ID: 19416103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The absence of cyclin-dependent protein kinase Pho85 affects stability of mitochondrial DNA in yeast Saccharomyces cerevisiae].
    Fizikova AIu; Padkina MV; Sambuk EV
    Genetika; 2009 Jun; 45(6):745-52. PubMed ID: 19639865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study the effect of Vitamin K on intracellular NAD level in yeast by fluorescence spectrum.
    Yahong C; Ruxiu C; Ke Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 May; 67(1):235-9. PubMed ID: 17254841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.
    Bellissimi E; van Dijken JP; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2009 May; 9(3):358-64. PubMed ID: 19416101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.