BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 19395161)

  • 1. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.
    Kanamori T; Matsuda M; Miyake M
    J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam reforming of biomass gasification tar using benzene as a model compound over various Ni supported metal oxide catalysts.
    Park HJ; Park SH; Sohn JM; Park J; Jeon JK; Kim SS; Park YK
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S101-3. PubMed ID: 19369069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of valuable metals from electronic and galvanic industrial wastes by leaching and electrowinning.
    Vegliò F; Quaresima R; Fornari P; Ubaldini S
    Waste Manag; 2003; 23(3):245-52. PubMed ID: 12737966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2.
    Wang K; Li X; Ji S; Huang B; Li C
    ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery and reuse of Ni(II) from rinsewater of electroplating industries.
    Priya PG; Basha CA; Ramamurthi V; Begum SN
    J Hazard Mater; 2009 Apr; 163(2-3):899-909. PubMed ID: 18762375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries.
    Rabah MA; Farghaly FE; Abd-El Motaleb MA
    Waste Manag; 2008; 28(7):1159-67. PubMed ID: 17714929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel process for recovering valuable metals from waste nickel-cadmium batteries.
    Huang K; Li J; Xu Z
    Environ Sci Technol; 2009 Dec; 43(23):8974-8. PubMed ID: 19943675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical characterisation of spent rechargeable batteries.
    Vassura I; Morselli L; Bernardi E; Passarini F
    Waste Manag; 2009 Aug; 29(8):2332-5. PubMed ID: 19423325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic recovery of Cd, Cr, As, Ni, Zn and Mn from waste printed circuit boards: effect of assisting agents.
    Xiu FR; Zhang FS
    J Hazard Mater; 2009 Oct; 170(1):191-6. PubMed ID: 19481346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of spent catalyst from the nitrogenous fertilizer industry--a review of the available methods of regeneration, recovery and disposal.
    Singh B
    J Hazard Mater; 2009 Aug; 167(1-3):24-37. PubMed ID: 19286315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.
    Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR
    J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes.
    Lupi C; Pasquali M; Dell'era A
    Waste Manag; 2005; 25(2):215-20. PubMed ID: 15737721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaseous fuel production from nonrecyclable paper wastes by using supported metal catalysts in high-temperature liquid water.
    Yamaguchi A; Hiyoshi N; Sato O; Bando KK; Shirai M
    ChemSusChem; 2010 Jun; 3(6):737-41. PubMed ID: 20512801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid.
    Santhiya D; Ting YP
    J Biotechnol; 2005 Mar; 116(2):171-84. PubMed ID: 15664081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.
    Sobianowska-Turek A
    Waste Manag; 2018 Jul; 77():213-219. PubMed ID: 29655922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study.
    Chen Y; Xie C; Li Y; Song C; Bolin TB
    Phys Chem Chem Phys; 2010 Jun; 12(21):5707-11. PubMed ID: 20431820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.
    Li Y; Perederiy I; Papangelakis VG
    J Hazard Mater; 2008 Apr; 152(2):607-15. PubMed ID: 17728060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane.
    Han JW; Kim C; Park JS; Lee H
    ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.