BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19395566)

  • 1. Aldouronate utilization in Paenibacillus sp. strain JDR-2: Physiological and enzymatic evidence for coupling of extracellular depolymerization and intracellular metabolism.
    Nong G; Rice JD; Chow V; Preston JF
    Appl Environ Microbiol; 2009 Jul; 75(13):4410-8. PubMed ID: 19395566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, function, and regulation of the aldouronate utilization gene cluster from Paenibacillus sp. strain JDR-2.
    Chow V; Nong G; Preston JF
    J Bacteriol; 2007 Dec; 189(24):8863-70. PubMed ID: 17921311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GH51 arabinofuranosidase and its role in the methylglucuronoarabinoxylan utilization system in Paenibacillus sp. strain JDR-2.
    Sawhney N; Preston JF
    Appl Environ Microbiol; 2014 Oct; 80(19):6114-25. PubMed ID: 25063665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GH115 α-glucuronidase and GH11 xylanase from Paenibacillus sp. JDR-2: potential roles in processing glucuronoxylans.
    Rhee MS; Sawhney N; Kim YS; Rhee HJ; Hurlbert JC; St John FJ; Nong G; Rice JD; Preston JF
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1465-1476. PubMed ID: 27766358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic analysis of xylan utilization systems in Paenibacillus sp. strain JDR-2.
    Sawhney N; Crooks C; St John F; Preston JF
    Appl Environ Microbiol; 2015 Feb; 81(4):1490-501. PubMed ID: 25527555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 1,3-1,4-β-Glucan Utilization Regulon in Paenibacillus sp. Strain JDR-2.
    Chow V; Kim YS; Rhee MS; Sawhney N; St John FJ; Nong G; Rice JD; Preston JF
    Appl Environ Microbiol; 2016 Jan; 82(6):1789-1798. PubMed ID: 26746717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial xylan utilization regulons: systems for coupling depolymerization of methylglucuronoxylans with assimilation and metabolism.
    Chow V; Nong G; St John FJ; Sawhney N; Rice JD; Preston JF
    J Ind Microbiol Biotechnol; 2022 Apr; 49(2):. PubMed ID: 34734267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization.
    Stjohn FJ; Rice JD; Preston JF
    Appl Environ Microbiol; 2006 Feb; 72(2):1496-506. PubMed ID: 16461704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Multifunctional Arabinofuranosidase/Endoxylanase/β-Xylosidase GH43 Enzyme from Paenibacillus curdlanolyticus B-6 and Its Synergistic Action To Produce Arabinose and Xylose from Cereal Arabinoxylan.
    Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Ratanakhanokchai K
    Appl Environ Microbiol; 2021 Nov; 87(24):e0173021. PubMed ID: 34613758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides.
    Sawhney N; Crooks C; Chow V; Preston JF; St John FJ
    BMC Genomics; 2016 Feb; 17():131. PubMed ID: 26912334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete fermentation of xylose and methylglucuronoxylose derived from methylglucuronoxylan by Enterobacter asburiae strain JDR-1.
    Bi C; Rice JD; Preston JF
    Appl Environ Microbiol; 2009 Jan; 75(2):395-404. PubMed ID: 19011070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient D(--) lactic acid production from hemicellulose hydrolysate.
    Bi C; Zhang X; Rice JD; Ingram LO; Preston JF
    Biotechnol Lett; 2009 Oct; 31(10):1551-7. PubMed ID: 19504045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass.
    Ghio S; Insani EM; Piccinni FE; Talia PM; Grasso DH; Campos E
    Microbiol Res; 2016; 186-187():16-26. PubMed ID: 27242139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical and kinetic characterization of GH43 β-D-xylosidase/α-L-arabinofuranosidase and GH30 α-L-arabinofuranosidase/β-D -xylosidase from rumen metagenome.
    Zhou J; Bao L; Chang L; Zhou Y; Lu H
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):143-52. PubMed ID: 21720773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylan utilization regulon in Xanthomonas citri pv. citri Strain 306: gene expression and utilization of oligoxylosides.
    Chow V; Shantharaj D; Guo Y; Nong G; Minsavage GV; Jones JB; Preston JF
    Appl Environ Microbiol; 2015 Mar; 81(6):2163-72. PubMed ID: 25595763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic hydrolysis of xylan using novel xylanases, β-xylosidases, and an α-L-arabinofuranosidase from Geobacillus thermodenitrificans NG80-2.
    Huang D; Liu J; Qi Y; Yang K; Xu Y; Feng L
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6023-6037. PubMed ID: 28616644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel structural features of xylanase A1 from Paenibacillus sp. JDR-2.
    St John FJ; Preston JF; Pozharski E
    J Struct Biol; 2012 Nov; 180(2):303-11. PubMed ID: 23000703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic engineering of Enterobacter asburiae strain JDR-1 for efficient production of ethanol from hemicellulose hydrolysates.
    Bi C; Zhang X; Ingram LO; Preston JF
    Appl Environ Microbiol; 2009 Sep; 75(18):5743-9. PubMed ID: 19617386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Glycoside Hydrolase Family 8 Reducing-End Xylose-Releasing Exo-oligoxylanase Rex8A from Paenibacillus barcinonensis BP-23 Is Active on Branched Xylooligosaccharides.
    Valenzuela SV; Lopez S; Biely P; Sanz-Aparicio J; Pastor FI
    Appl Environ Microbiol; 2016 Sep; 82(17):5116-24. PubMed ID: 27316951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Pretreatment-Independent Saccharifications of Xylan and Cellulose of Rice Straw by Bacterial Weak Lignin-Binding Xylanolytic and Cellulolytic Enzymes.
    Teeravivattanakit T; Baramee S; Phitsuwan P; Sornyotha S; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka K; Ratanakhanokchai K
    Appl Environ Microbiol; 2017 Nov; 83(22):. PubMed ID: 28864653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.