These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19396292)

  • 1. Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part I theory and formulation.
    Roy R; Sevick-Muraca E
    Opt Express; 1999 May; 4(10):353-71. PubMed ID: 19396292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Truncated Newton's optimization scheme for absorption and fluorescence optical tomography: Part II Reconstruction from synthetic measurements.
    Roy R; Sevick-Muraca E
    Opt Express; 1999 May; 4(10):372-82. PubMed ID: 19396293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration.
    Roy R; Sevick-Muraca EM
    Appl Opt; 2001 May; 40(13):2206-15. PubMed ID: 18357229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multipixel techniques for frequency-domain photon migration imaging.
    Reynolds JS; Troy TL; Sevick-Muraca EM
    Biotechnol Prog; 1997; 13(5):669-80. PubMed ID: 9336987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional fluorescence enhanced optical tomography using referenced frequency-domain photon migration measurements at emission and excitation wavelengths.
    Lee J; Sevick-Muraca EM
    J Opt Soc Am A Opt Image Sci Vis; 2002 Apr; 19(4):759-71. PubMed ID: 11934169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active constrained truncated Newton method for simple-bound optical tomography.
    Roy R; Sevick-Muraca EM
    J Opt Soc Am A Opt Image Sci Vis; 2000 Sep; 17(9):1627-41. PubMed ID: 10975373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy.
    Tromberg BJ; Shah N; Lanning R; Cerussi A; Espinoza J; Pham T; Svaasand L; Butler J
    Neoplasia; 2000; 2(1-2):26-40. PubMed ID: 10933066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the refractive index-mismatch at the boundaries measured in fluorescenceenhanced frequency-domain photon migration imaging.
    Godavarty A; Hawrysz D; Roy R; Sevick-Muraca E; Eppstein M
    Opt Express; 2002 Jul; 10(15):653-62. PubMed ID: 19451918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media.
    Roy R; Godavarty A; Sevick-Muraca EM
    IEEE Trans Med Imaging; 2003 Jul; 22(7):824-36. PubMed ID: 12906236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography.
    Eppstein MJ; Hawrysz DJ; Godavarty A; Sevick-Muraca EM
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9619-24. PubMed ID: 12105269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive finite element based tomography for fluorescence optical imaging in tissue.
    Joshi A; Bangerth W; Sevick-Muraca E
    Opt Express; 2004 Nov; 12(22):5402-17. PubMed ID: 19484100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-infrared fluorescence contrast-enhanced imaging with intensified charge-coupled device homodyne detection: measurement precision and accuracy.
    Thompson AB; Sevick-Muraca EM
    J Biomed Opt; 2003 Jan; 8(1):111-20. PubMed ID: 12542387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence-enhanced absorption imaging using frequency-domain photon migration: tolerance to measurement error.
    Lee J; Sevick-Muraca E
    J Biomed Opt; 2001 Jan; 6(1):58-67. PubMed ID: 11178581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence-enhanced three-dimensional lifetime imaging: a phantom study.
    Roy R; Godavarty A; Sevick-Muraca EM
    Phys Med Biol; 2007 Jul; 52(14):4155-70. PubMed ID: 17664600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomedical optical tomography using dynamic parameterization and bayesian conditioning on photon migration measurements.
    Eppstein MJ; Dougherty DE; Troy TL; Sevick-Muraca EM
    Appl Opt; 1999 Apr; 38(10):2138-50. PubMed ID: 18319774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations.
    Jiang H
    Appl Opt; 1998 Aug; 37(22):5337-43. PubMed ID: 18286015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence lifetime spectroscopic imaging with measurements of photon migration.
    Sevick-Muraca EM; Reynolds JS; Troy TL; Lopez G; Paithankar DY
    Ann N Y Acad Sci; 1998 Feb; 838():46-57. PubMed ID: 9511794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity and depth penetration of continuous wave versus frequency-domain photon migration near-infrared fluorescence contrast-enhanced imaging.
    Houston JP; Thompson AB; Gurfinkel M; Sevick-Muraca EM
    Photochem Photobiol; 2003 Apr; 77(4):420-30. PubMed ID: 12733654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media.
    Wang D; Liu X; Chen Y; Bai J
    IEEE Trans Inf Technol Biomed; 2009 Sep; 13(5):766-73. PubMed ID: 19304493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.