BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19396808)

  • 1. A tissue-engineered model of the intestinal lacteal for evaluating lipid transport by lymphatics.
    Dixon JB; Raghunathan S; Swartz MA
    Biotechnol Bioeng; 2009 Aug; 103(6):1224-35. PubMed ID: 19396808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal lymphatic vessels and their role in chylomicron absorption and lipid homeostasis.
    Hokkanen K; Tirronen A; Ylä-Herttuala S
    Curr Opin Lipidol; 2019 Oct; 30(5):370-376. PubMed ID: 31361624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of ATP-dependent, transcellular transport of lipid across the lymphatic endothelium using an in vitro model of the lacteal.
    Reed AL; Rowson SA; Dixon JB
    Pharm Res; 2013 Dec; 30(12):3271-80. PubMed ID: 24254195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravital imaging of intestinal lacteals unveils lipid drainage through contractility.
    Choe K; Jang JY; Park I; Kim Y; Ahn S; Park DY; Hong YK; Alitalo K; Koh GY; Kim P
    J Clin Invest; 2015 Nov; 125(11):4042-52. PubMed ID: 26436648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages.
    Suh SH; Choe K; Hong SP; Jeong SH; Mäkinen T; Kim KS; Alitalo K; Surh CD; Koh GY; Song JH
    EMBO Rep; 2019 Apr; 20(4):. PubMed ID: 30783017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The lipid metabolism of the small intestine and its correlation to the lipid and lipoprotein metabolism of the total organism].
    Gangl A
    Acta Med Austriaca Suppl; 1975; 2():1-49. PubMed ID: 1065179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The asymmetric Pitx2 gene regulates gut muscular-lacteal development and protects against fatty liver disease.
    Hu S; Mahadevan A; Elysee IF; Choi J; Souchet NR; Bae GH; Taboada AK; Sanketi B; Duhamel GE; Sevier CS; Tao G; Kurpios NA
    Cell Rep; 2021 Nov; 37(8):110030. PubMed ID: 34818545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular transport of high-density lipoprotein 3 in intestinal epithelial cells (Caco-2) is tubulin associated.
    Rogler G; Aschenbrenner E; Gross V; Stange EF; Schölmerich J
    Digestion; 2000; 61(1):47-58. PubMed ID: 10671774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained ACE2 Expression by Probiotic Improves Integrity of Intestinal Lymphatics and Retinopathy in Type 1 Diabetic Model.
    Prasad R; Adu-Agyeiwaah Y; Floyd JL; Asare-Bediako B; Li Calzi S; Chakraborty D; Harbour A; Rohella A; Busik JV; Li Q; Grant MB
    J Clin Med; 2023 Feb; 12(5):. PubMed ID: 36902558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Caco-2 cells as a model for intestinal lipoprotein synthesis and secretion.
    Levy E; Mehran M; Seidman E
    FASEB J; 1995 May; 9(8):626-35. PubMed ID: 7768354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of lacteal integrity and junction transformation in obesity: A promising therapeutic target?
    Xia Q; Dong H; Guo Y; Fang K; Hu M; Xu L; Lu F; Gong J
    Front Endocrinol (Lausanne); 2022; 13():1007856. PubMed ID: 36506056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intestinal-fatty acid binding protein and lipid transport in human intestinal epithelial cells.
    Montoudis A; Delvin E; Menard D; Beaulieu JF; Jean D; Tremblay E; Bendayan M; Levy E
    Biochem Biophys Res Commun; 2006 Jan; 339(1):248-54. PubMed ID: 16297872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel tool to characterize paracellular transport: the APTS-dextran ladder.
    Neuhaus W; Bogner E; Wirth M; Trzeciak J; Lachmann B; Gabor F; Noe CR
    Pharm Res; 2006 Jul; 23(7):1491-501. PubMed ID: 16779707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive self-assembling lipid-like peptides as permeation enhancers for oral drug delivery.
    Karavasili C; Spanakis M; Papagiannopoulou D; Vizirianakis IS; Fatouros DG; Koutsopoulos S
    J Pharm Sci; 2015 Jul; 104(7):2304-11. PubMed ID: 25994901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipidomics Provides Novel Insights into Understanding the Bee Pollen Lipids Transepithelial Transport and Metabolism in Human Intestinal Cells.
    Li Q; Liang X; Xue X; Wang K; Wu L
    J Agric Food Chem; 2020 Jan; 68(3):907-917. PubMed ID: 31842537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal lymphatic transport for drug delivery.
    Yáñez JA; Wang SW; Knemeyer IW; Wirth MA; Alton KB
    Adv Drug Deliv Rev; 2011 Sep; 63(10-11):923-42. PubMed ID: 21689702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute-on-chronic effects of fatty acids on intestinal triacylglycerol-rich lipoprotein metabolism.
    Black IL; Roche HM; Tully AM; Gibney MJ
    Br J Nutr; 2002 Dec; 88(6):661-9. PubMed ID: 12493088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal lymphatic drug transport: an update.
    Porter CJ; Charman WN
    Adv Drug Deliv Rev; 2001 Aug; 50(1-2):61-80. PubMed ID: 11489334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of colchicine on the intestinal transport of endogenous lipid. Ultrastructural, biochemical, and radiochemical studies in fasting rats.
    Pavelka M; Gangl A
    Gastroenterology; 1983 Mar; 84(3):544-55. PubMed ID: 6822325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and transport of chylomicrons by enterocytes to the lymphatics.
    Tso P; Balint JA
    Am J Physiol; 1986 Jun; 250(6 Pt 1):G715-26. PubMed ID: 3521320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.