These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 19396858)

  • 1. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS; Guess TM
    J Biomech Eng; 2018 Jul; 140(7):0710121-8. PubMed ID: 29164228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification?
    Valente G; Pitto L; Testi D; Seth A; Delp SL; Stagni R; Viceconti M; Taddei F
    PLoS One; 2014; 9(11):e112625. PubMed ID: 25390896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine tuning total knee replacement contact force prediction algorithms using blinded model validation.
    Lundberg HJ; Knowlton C; Wimmer MA
    J Biomech Eng; 2013 Feb; 135(2):021015. PubMed ID: 23445060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grand challenge competition to predict in vivo knee loads.
    Fregly BJ; Besier TF; Lloyd DG; Delp SL; Banks SA; Pandy MG; D'Lima DD
    J Orthop Res; 2012 Apr; 30(4):503-13. PubMed ID: 22161745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can a Musculoskeletal Model Adapted to Knee Implant Geometry Improve Prediction of 3D Contact Forces and Moments?
    Guitteny S; Aissaoui R; Dumas R
    Ann Biomed Eng; 2023 Aug; 51(8):1872-1883. PubMed ID: 37101092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Knee Joint Contact Forces During Normal Walking Using Kinematic Inputs With a Long-Short Term Neural Network.
    Bennett HJ; Estler K; Valenzuela K; Weinhandl JT
    J Biomech Eng; 2024 Aug; 146(8):. PubMed ID: 38270972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knee kinematics are primarily determined by implant alignment but knee kinetics are mainly influenced by muscle coordination strategy.
    Febrer-Nafría M; Dreyer MJ; Maas A; Taylor WR; Smith CR; Hosseini Nasab SH
    J Biomech; 2023 Dec; 161():111851. PubMed ID: 37907050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle synergy-informed neuromusculoskeletal modelling to estimate knee contact forces in children with cerebral palsy.
    Rabbi MF; Davico G; Lloyd DG; Carty CP; Diamond LE; Pizzolato C
    Biomech Model Mechanobiol; 2024 Jun; 23(3):1077-1090. PubMed ID: 38459157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Update on grand challenge competition to predict in vivo knee loads.
    Kinney AL; Besier TF; D'Lima DD; Fregly BJ
    J Biomech Eng; 2013 Feb; 135(2):021012. PubMed ID: 23445057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity.
    Sartori M; Reggiani M; Farina D; Lloyd DG
    PLoS One; 2012; 7(12):e52618. PubMed ID: 23300725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of induced gait asymmetry on joint reaction forces.
    McCain EM; Dalman MJ; Berno ME; Libera TL; Lewek MD; Sawicki GS; Saul KR
    J Biomech; 2023 May; 153():111581. PubMed ID: 37141689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of femoral anteversion angle and neck-shaft angle on muscle forces and joint loading during walking.
    Kainz H; Mindler GT; Kranzl A
    PLoS One; 2023; 18(10):e0291458. PubMed ID: 37824447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading of the hip and knee joints during whole body vibration training.
    Bergmann G; Kutzner I; Bender A; Dymke J; Trepczynski A; Duda GN; Felsenberg D; Damm P
    PLoS One; 2018; 13(12):e0207014. PubMed ID: 30540775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of hip implant alignment on muscle and joint loading during dynamic activities.
    Myers CA; Laz PJ; Shelburne KB; Judd DL; Huff DN; Winters JD; Stevens-Lapsley JE; Rullkoetter PJ
    Clin Biomech (Bristol, Avon); 2018 Mar; 53():93-100. PubMed ID: 29482087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knee joint forces: prediction, measurement, and significance.
    D'Lima DD; Fregly BJ; Patil S; Steklov N; Colwell CW
    Proc Inst Mech Eng H; 2012 Feb; 226(2):95-102. PubMed ID: 22468461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validity of muscle activation estimated with predicted ground reaction force in inverse dynamics based musculoskeletal simulation during gait.
    Ueno R; Tsuyuki Y; Tohyama H
    J Biomech; 2024 May; 168():112118. PubMed ID: 38677028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A framework based on subject-specific musculoskeletal models and Monte Carlo simulations to personalize muscle coordination retraining.
    Kainz H; Koller W; Wallnöfer E; Bader TR; Mindler GT; Kranzl A
    Sci Rep; 2024 Feb; 14(1):3567. PubMed ID: 38347085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.
    Markowitz J; Herr H
    PLoS Comput Biol; 2016 May; 12(5):e1004912. PubMed ID: 27175486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.