These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 19396883)
1. Mono- and multisite solid catalysts in cascade reactions for chemical process intensification. Climent MJ; Corma A; Iborra S ChemSusChem; 2009; 2(6):500-6. PubMed ID: 19396883 [TBL] [Abstract][Full Text] [Related]
2. Using more environmentally friendly solvents and benign catalysts in performing conventional organic reactions. Ranu BC; Saha A; Dey R Curr Opin Drug Discov Devel; 2010; 13(6):658-68. PubMed ID: 21061229 [TBL] [Abstract][Full Text] [Related]
3. Sustainability in catalytic oxidation: an alternative approach or a structural evolution? Cavani F; Teles JH ChemSusChem; 2009; 2(6):508-34. PubMed ID: 19536755 [TBL] [Abstract][Full Text] [Related]
4. Cinchona-based phase-transfer catalysts for asymmetric synthesis. Jew SS; Park HG Chem Commun (Camb); 2009 Dec; (46):7090-103. PubMed ID: 19920996 [TBL] [Abstract][Full Text] [Related]
5. Cascade reactions catalyzed by metal organic frameworks. Dhakshinamoorthy A; Garcia H ChemSusChem; 2014 Sep; 7(9):2392-410. PubMed ID: 25082205 [TBL] [Abstract][Full Text] [Related]
6. Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Ramachary DB; Jain S Org Biomol Chem; 2011 Mar; 9(5):1277-300. PubMed ID: 21120241 [TBL] [Abstract][Full Text] [Related]
9. Multisite organic-inorganic hybrid catalysts for the direct sustainable synthesis of GABAergic drugs. Leyva-Pérez A; García-García P; Corma A Angew Chem Int Ed Engl; 2014 Aug; 53(33):8687-90. PubMed ID: 24939840 [TBL] [Abstract][Full Text] [Related]
10. Polymer supports in organic catalysis and synthesis. Bergbreiter DE Curr Opin Drug Discov Devel; 2001 Nov; 4(6):736-44. PubMed ID: 11899613 [TBL] [Abstract][Full Text] [Related]
11. Beyond traditional cross couplings: the scope of the cross dehydrogenative coupling reaction. Scheuermann CJ Chem Asian J; 2010 Mar; 5(3):436-51. PubMed ID: 20041458 [TBL] [Abstract][Full Text] [Related]
12. Acylation reactions over zeolites and mesoporous catalysts. Bejblová M; Procházková D; Cejka J ChemSusChem; 2009; 2(6):486-99. PubMed ID: 19350610 [TBL] [Abstract][Full Text] [Related]
13. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Takale BS; Bao M; Yamamoto Y Org Biomol Chem; 2014 Apr; 12(13):2005-27. PubMed ID: 24525525 [TBL] [Abstract][Full Text] [Related]
14. Combining transition metal catalysis and organocatalysis: a broad new concept for catalysis. Shao Z; Zhang H Chem Soc Rev; 2009 Sep; 38(9):2745-55. PubMed ID: 19690751 [TBL] [Abstract][Full Text] [Related]
15. Laccase catalysis for the synthesis of bioactive compounds. Kudanga T; Nemadziva B; Le Roes-Hill M Appl Microbiol Biotechnol; 2017 Jan; 101(1):13-33. PubMed ID: 27872999 [TBL] [Abstract][Full Text] [Related]
16. Metalloporphyrin-based oxidation systems: from biomimetic reactions to application in organic synthesis. Che CM; Huang JS Chem Commun (Camb); 2009 Jul; (27):3996-4015. PubMed ID: 19568617 [TBL] [Abstract][Full Text] [Related]
17. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. Rinaldi R; Schüth F ChemSusChem; 2009; 2(12):1096-107. PubMed ID: 19950346 [TBL] [Abstract][Full Text] [Related]
18. Supported Catalysts for Continuous Flow Synthesis. Colella M; Carlucci C; Luisi R Top Curr Chem (Cham); 2018 Nov; 376(6):46. PubMed ID: 30470973 [TBL] [Abstract][Full Text] [Related]
19. Introduction to enzymes in synthesis. Hudlicky T Chem Rev; 2011 Jul; 111(7):3995-7. PubMed ID: 21671674 [No Abstract] [Full Text] [Related]
20. Microwave: An Important and Efficient Tool for the Synthesis of Biological Potent Organic Compounds. Kumari K; Vishvakarma VK; Singh P; Patel R; Chandra R Curr Med Chem; 2017; 24(41):4579-4595. PubMed ID: 28554323 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]