These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19396957)

  • 1. Genesis, effects and fates of repeats in prokaryotic genomes.
    Treangen TJ; Abraham AL; Touchon M; Rocha EP
    FEMS Microbiol Rev; 2009 May; 33(3):539-71. PubMed ID: 19396957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and fate of repeats in bacteria.
    Achaz G; Rocha EP; Netter P; Coissac E
    Nucleic Acids Res; 2002 Jul; 30(13):2987-94. PubMed ID: 12087185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of Homologous Recombination on the Evolution of Prokaryotic Core Genomes.
    González-Torres P; Rodríguez-Mateos F; Antón J; Gabaldón T
    mBio; 2019 Jan; 10(1):. PubMed ID: 30670614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Repeats in bacterial genomes: evolutionary considerations].
    Smirnov GB
    Mol Gen Mikrobiol Virusol; 2010; (2):11-20. PubMed ID: 20545043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated sequences in bacterial chromosomes and plasmids: a glimpse from sequenced genomes.
    Romero D; Martínez-Salazar J; Ortiz E; Rodríguez C; Valencia-Morales E
    Res Microbiol; 1999; 150(9-10):735-43. PubMed ID: 10673011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PILER-CR: fast and accurate identification of CRISPR repeats.
    Edgar RC
    BMC Bioinformatics; 2007 Jan; 8():18. PubMed ID: 17239253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene-specific selective sweeps in bacteria and archaea caused by negative frequency-dependent selection.
    Takeuchi N; Cordero OX; Koonin EV; Kaneko K
    BMC Biol; 2015 Apr; 13():20. PubMed ID: 25928466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria.
    Mojica FJ; Díez-Villaseñor C; Soria E; Juez G
    Mol Microbiol; 2000 Apr; 36(1):244-6. PubMed ID: 10760181
    [No Abstract]   [Full Text] [Related]  

  • 9. Identification of a novel family of sequence repeats among prokaryotes.
    Jansen R; van Embden JD; Gaastra W; Schouls LM
    OMICS; 2002; 6(1):23-33. PubMed ID: 11883425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interspersed DNA repeats bcr1-bcr18 of Bacillus cereus group bacteria form three distinct groups with different evolutionary and functional patterns.
    Kristoffersen SM; Tourasse NJ; Kolstø AB; Økstad OA
    Mol Biol Evol; 2011 Feb; 28(2):963-83. PubMed ID: 20961964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas, the immune system of bacteria and archaea.
    Horvath P; Barrangou R
    Science; 2010 Jan; 327(5962):167-70. PubMed ID: 20056882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary conservation of sequence and secondary structures in CRISPR repeats.
    Kunin V; Sorek R; Hugenholtz P
    Genome Biol; 2007; 8(4):R61. PubMed ID: 17442114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive DNA in eukaryotic genomes.
    Biscotti MA; Olmo E; Heslop-Harrison JS
    Chromosome Res; 2015 Sep; 23(3):415-20. PubMed ID: 26514350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures and stability of simple DNA repeats from bacteria.
    Brazda V; Fojta M; Bowater RP
    Biochem J; 2020 Jan; 477(2):325-339. PubMed ID: 31967649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas systems and RNA-guided interference.
    Barrangou R
    Wiley Interdiscip Rev RNA; 2013; 4(3):267-78. PubMed ID: 23520078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of intrachromosomal duplications among the eukaryote genomes.
    Achaz G; Netter P; Coissac E
    Mol Biol Evol; 2001 Dec; 18(12):2280-8. PubMed ID: 11719577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of long repeats in bacterial genomes reveals alternative evolutionary mechanisms in Bacillus subtilis and other competent prokaryotes.
    Rocha EP; Danchin A; Viari A
    Mol Biol Evol; 1999 Sep; 16(9):1219-30. PubMed ID: 10486977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominant short repeated sequences in bacterial genomes.
    Avershina E; Rudi K
    Genomics; 2015 Mar; 105(3):175-81. PubMed ID: 25561351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.
    Mao D; Grogan DW
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting evolutionary signals in a forest of prokaryotic gene trees.
    Schliep K; Lopez P; Lapointe FJ; Bapteste E
    Mol Biol Evol; 2011 Apr; 28(4):1393-405. PubMed ID: 21172835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.