BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19397257)

  • 1. Amphiphilic random glycopolymer based on phenylboronic acid: synthesis, characterization, and potential as glucose-sensitive matrix.
    Jin X; Zhang X; Wu Z; Teng D; Zhang X; Wang Y; Wang Z; Li C
    Biomacromolecules; 2009 Jun; 10(6):1337-45. PubMed ID: 19397257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-responsive vehicles containing phenylborate ester for controlled insulin release at neutral pH.
    Yao Y; Zhao L; Yang J; Yang J
    Biomacromolecules; 2012 Jun; 13(6):1837-44. PubMed ID: 22537190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenylboronate-diol crosslinked glycopolymeric nanocarriers for insulin delivery at physiological pH.
    Guo Q; Wu Z; Zhang X; Sun L; Li C
    Soft Matter; 2014 Feb; 10(6):911-20. PubMed ID: 24835766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylboronic acid as a glucose-responsive trigger to tune the insulin release of glycopolymer nanoparticles.
    Chai Z; Ma L; Wang Y; Ren X
    J Biomater Sci Polym Ed; 2016; 27(7):599-610. PubMed ID: 26765145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenylboronic acid grafted chitosan as a glucose-sensitive vehicle for controlled insulin release.
    Wu Z; Zhang S; Zhang X; Shu S; Chu T; Yu D
    J Pharm Sci; 2011 Jun; 100(6):2278-86. PubMed ID: 21268025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Block versus Random Amphiphilic Glycopolymer Nanopaticles as Glucose-Responsive Vehicles.
    Guo Q; Zhang T; An J; Wu Z; Zhao Y; Dai X; Zhang X; Li C
    Biomacromolecules; 2015 Oct; 16(10):3345-56. PubMed ID: 26397308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of glucose-sensitive block glycopolymers based on phenylboronic acid via RAFT polymerization.
    Cheng C; Zhang X; Wang Y; Li C
    J Control Release; 2011 Nov; 152 Suppl 1():e267-9. PubMed ID: 22195904
    [No Abstract]   [Full Text] [Related]  

  • 8. Glucose- and temperature-sensitive nanoparticles for insulin delivery.
    Wu JZ; Williams GR; Li HY; Wang D; Wu H; Li SD; Zhu LM
    Int J Nanomedicine; 2017; 12():4037-4057. PubMed ID: 28603417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH- and glucose-sensitive glycopolymer nanoparticles based on phenylboronic acid for triggered release of insulin.
    Wang Y; Zhang X; Han Y; Cheng C; Li C
    Carbohydr Polym; 2012 Jun; 89(1):124-31. PubMed ID: 24750613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylboronic acid-based complex micelles with enhanced glucose-responsiveness at physiological pH by complexation with glycopolymer.
    Ma R; Yang H; Li Z; Liu G; Sun X; Liu X; An Y; Shi L
    Biomacromolecules; 2012 Oct; 13(10):3409-17. PubMed ID: 22957842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and evaluation of temperature- and glucose-sensitive nanoparticles based on phenylboronic acid and N-vinylcaprolactam for insulin delivery.
    Wu JZ; Bremner DH; Li HY; Sun XZ; Zhu LM
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1026-35. PubMed ID: 27612799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of a family of amphiphilic glycopolymers via controlled ring-opening polymerization of functionalized cyclic carbonates and their application in drug delivery.
    Suriano F; Pratt R; Tan JP; Wiradharma N; Nelson A; Yang YY; Dubois P; Hedrick JL
    Biomaterials; 2010 Mar; 31(9):2637-45. PubMed ID: 20074794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH.
    Matsumoto A; Yoshida R; Kataoka K
    Biomacromolecules; 2004; 5(3):1038-45. PubMed ID: 15132698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenylboronic acid-functionalized glycopolymeric nanoparticles for biomacromolecules delivery across nasal respiratory.
    Zhang X; Wang Y; Zheng C; Li C
    Eur J Pharm Biopharm; 2012 Sep; 82(1):76-84. PubMed ID: 22659236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP.
    Zhao Y; Trewyn BG; Slowing II; Lin VS
    J Am Chem Soc; 2009 Jun; 131(24):8398-400. PubMed ID: 19476380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-sensitive inverse opal hydrogels: analysis of optical diffraction response.
    Lee YJ; Pruzinsky SA; Braun PV
    Langmuir; 2004 Apr; 20(8):3096-106. PubMed ID: 15875835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphiphilic self-assembled "polymeric drugs": morphology, properties, and biological behavior of nanoparticles.
    López-Donaire ML; Sussman EM; Fernández-Gutiérrez M; Méndez-Vilas A; Ratner BD; Vázquez-Lasa B; San Román J
    Biomacromolecules; 2012 Mar; 13(3):624-35. PubMed ID: 22339281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An easy way to sugar-containing polymer vesicles or glycosomes.
    You L; Schlaad H
    J Am Chem Soc; 2006 Oct; 128(41):13336-7. PubMed ID: 17031928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids: synthesis, glucose-surfaced nanoparticles, and recognition with lectin.
    Dai XH; Dong CM; Yan D
    J Phys Chem B; 2008 Mar; 112(12):3644-52. PubMed ID: 18318528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic glycopolymer nanoparticles as vehicles for nasal delivery of peptides and proteins.
    Zheng C; Guo Q; Wu Z; Sun L; Zhang Z; Li C; Zhang X
    Eur J Pharm Sci; 2013 Jul; 49(4):474-82. PubMed ID: 23648782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.