These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 1939730)

  • 1. Ultrastructural evidence that early synapse formation on central vestibular sensory neurons is independent of peripheral vestibular influences.
    Petralia RS; Gill SS; Peusner KD
    J Comp Neurol; 1991 Aug; 310(1):68-81. PubMed ID: 1939730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural study of synapses at the time of neuronal migration and early differentiation in the tangential vestibular nucleus of the chick embryo in vivo.
    Petralia RS; Peusner KD
    J Comp Neurol; 1990 Feb; 292(2):231-45. PubMed ID: 2319011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The earliest ultrastructural development of the tangential vestibular nucleus in the chick embryo.
    Petralia RS; Peusner KD
    J Comp Neurol; 1991 Aug; 310(1):82-93. PubMed ID: 1719038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vestibular compensation after ganglionectomy: ultrastructural study of the tangential vestibular nucleus and behavioral study of the hatchling chick.
    Aldrich EM; Peusner KD
    J Neurosci Res; 2002 Jan; 67(1):122-38. PubMed ID: 11754088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of altered afferent input on the number of trochlear motor neurons during development.
    Sohal GS; Hirano S; Kumaresan K; Ali MM
    J Neurobiol; 1992 Feb; 23(1):10-6. PubMed ID: 1564452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of precocious and delayed afferent arrival on synapse localization on the amphibian Mauthner cell.
    Leber SM; Model PG
    J Comp Neurol; 1991 Nov; 313(1):31-44. PubMed ID: 1761755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus.
    Baird RA; Schuff NR
    J Comp Neurol; 1994 Apr; 342(2):279-98. PubMed ID: 8201035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of the internal ear during the 1st trimester of pregnancy. Differentiation of the sensory cells and formation of the 1st synapses].
    Lavigne-Rebillard M; Dechesne C; Pujol R; Sans A; Escudero P
    Ann Otolaryngol Chir Cervicofac; 1985; 102(7):493-8. PubMed ID: 3879139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphological correlations between spontaneously discharging primary vestibular afferents and vestibular nucleus neurons in the cat.
    Sato F; Sasaki H
    J Comp Neurol; 1993 Jul; 333(4):554-66. PubMed ID: 8370817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of primary vestibular neurons to galvanic vestibular stimulation (GVS) in the anaesthetised guinea pig.
    Kim J; Curthoys IS
    Brain Res Bull; 2004 Sep; 64(3):265-71. PubMed ID: 15464864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Afferent influences on the development of the brain stem auditory nuclei of the chicken: otocyst ablation.
    Parks TN
    J Comp Neurol; 1979 Feb; 183(3):665-77. PubMed ID: 759453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of electrophysiological properties and dendritic pattern in second-order chick vestibular neurons.
    Peusner KD; Giaume C
    J Comp Neurol; 1997 Aug; 384(4):621-33. PubMed ID: 9259493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the vestibular apparatus and central vestibular connections in a wallaby (Macropus eugenii).
    McCluskey SU; Marotte LR; Ashwell KW
    Brain Behav Evol; 2008; 71(4):271-86. PubMed ID: 18431054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of early deafness on development of brain stem auditory neurons.
    Parks TN
    Ann Otol Rhinol Laryngol Suppl; 1997 May; 168():37-43. PubMed ID: 9153116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of hypergravity and substrate vibration on vestibular function in developing chickens.
    Jones SM; Warren LE; Shukla R; Browning A; Fuller CA; Jones TA
    J Gravit Physiol; 2000 Dec; 7(3):31-44. PubMed ID: 12124183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity.
    Chiba A; Murphey RK
    J Neurobiol; 1991 Mar; 22(2):130-42. PubMed ID: 2030338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A developmental gradient of dendritic loss in the avian cochlear nucleus occurring independently of primary afferents.
    Parks TN; Jackson H
    J Comp Neurol; 1984 Aug; 227(3):459-66. PubMed ID: 6480902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Embryonic development of the chick primary trigeminal sensory-motor complex.
    Covell DA; Noden DM
    J Comp Neurol; 1989 Aug; 286(4):488-503. PubMed ID: 2778103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of synapses and "spoon" synaptic terminal space in the tangential vestibular nucleus: a quantitative electron microscope study.
    Peusner KD
    J Comp Neurol; 1984 Dec; 230(3):372-85. PubMed ID: 6520239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunoelectron microscopy of AMPA receptor subunits reveals three types of putative glutamatergic synapse in the rat vestibular end organs.
    Matsubara A; Takumi Y; Nakagawa T; Usami S; Shinkawa H; Ottersen OP
    Brain Res; 1999 Feb; 819(1-2):58-64. PubMed ID: 10082861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.