BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19397743)

  • 1. Extending immunofluorescence detection limits in whole paraffin-embedded formalin fixed tissues using hyperspectral confocal fluorescence imaging.
    Constantinou P; Dacosta RS; Wilson BC
    J Microsc; 2009 May; 234(2):137-46. PubMed ID: 19397743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues.
    Viegas MS; Martins TC; Seco F; do Carmo A
    Eur J Histochem; 2007; 51(1):59-66. PubMed ID: 17548270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new immunofluorostaining method using red fluorescence of PerCP on formalin-fixed paraffin-embedded tissues.
    Niki H; Hosokawa S; Nagaike K; Tagawa T
    J Immunol Methods; 2004 Oct; 293(1-2):143-51. PubMed ID: 15541284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An excitation wavelength-scanning spectral imaging system for preclinical imaging.
    Leavesley S; Jiang Y; Patsekin V; Rajwa B; Robinson JP
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023707. PubMed ID: 18315305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser-induced autofluorescence microscopy of normal and tumor human colonic tissue.
    Huang Z; Zheng W; Xie S; Chen R; Zeng H; McLean DI; Lui H
    Int J Oncol; 2004 Jan; 24(1):59-63. PubMed ID: 14654941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis.
    Ecker RC; de Martin R; Steiner GE; Schmid JA
    Cytometry A; 2004 Jun; 59(2):172-81. PubMed ID: 15170596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM).
    Baschong W; Suetterlin R; Laeng RH
    J Histochem Cytochem; 2001 Dec; 49(12):1565-72. PubMed ID: 11724904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyramide signal amplification method in multiple-label immunofluorescence confocal microscopy.
    Wang G; Achim CL; Hamilton RL; Wiley CA; Soontornniyomkij V
    Methods; 1999 Aug; 18(4):459-64. PubMed ID: 10491275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An immunofluorescence method for postembedded tissue in the acrylic resin Technovit 9100 New using fluorescein isothiocyanate secondary detection.
    Singhrao SK; Müller CT; Gilbert SJ; Duance VC; Archer CW
    Microsc Res Tech; 2009 Jul; 72(7):501-6. PubMed ID: 19301267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confocal laser scanning microscopy of whole mouse ovaries: excellent morphology, apoptosis detection, and spectroscopy.
    Zucker RM; Jeffay SC
    Cytometry A; 2006 Aug; 69(8):930-9. PubMed ID: 16969804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging membrane intercalating near infrared dyes to track multiple cell populations.
    Roy EJ; Sivaguru M; Fried G; Gray BD; Kranz DM
    J Immunol Methods; 2009 Aug; 348(1-2):18-29. PubMed ID: 19559026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of Single- and Dual-Color Immunofluorescence Protocols for Formalin-Fixed, Paraffin-Embedded Archival Tissues.
    Kajimura J; Ito R; Manley NR; Hale LP
    J Histochem Cytochem; 2016 Feb; 64(2):112-24. PubMed ID: 26392518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sudan black B reduces autofluorescence in murine renal tissue.
    Sun Y; Yu H; Zheng D; Cao Q; Wang Y; Harris D; Wang Y
    Arch Pathol Lab Med; 2011 Oct; 135(10):1335-42. PubMed ID: 21970489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral characterization of Dictyostelium autofluorescence.
    Engel R; Van Haastert PJ; Visser AJ
    Microsc Res Tech; 2006 Mar; 69(3):168-74. PubMed ID: 16538623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunofluorescence technique for 100-nm-thick semithin sections of Epon-embedded tissues.
    Haraguchi CM; Yokota S
    Histochem Cell Biol; 2002 Jan; 117(1):81-5. PubMed ID: 11819100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the efficacy of fluorescent labeling for histological tracking of cells in early mammalian and avian embryos.
    Garton HJ; Schoenwolf GC
    Anat Rec; 1996 Jan; 244(1):112-17. PubMed ID: 8838429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination of FTIR spectral imaging and chemometrics for tumour detection from paraffin-embedded biopsies.
    Ly E; Piot O; Wolthuis R; Durlach A; Bernard P; Manfait M
    Analyst; 2008 Feb; 133(2):197-205. PubMed ID: 18227942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detergent addition to tryptic digests and ion mobility separation prior to MS/MS improves peptide yield and protein identification for in situ proteomic investigation of frozen and formalin-fixed paraffin-embedded adenocarcinoma tissue sections.
    Djidja MC; Francese S; Loadman PM; Sutton CW; Scriven P; Claude E; Snel MF; Franck J; Salzet M; Clench MR
    Proteomics; 2009 May; 9(10):2750-63. PubMed ID: 19405023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Four-color staining combining fluorescence and brightfield microscopy for simultaneous immune cell phenotyping and localization in tumor tissue sections.
    van Vlierberghe RL; Sandel MH; Prins FA; van Iersel LB; van de Velde CJ; Tollenaar RA; Kuppen PJ
    Microsc Res Tech; 2005 May; 67(1):15-21. PubMed ID: 16025486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunofluorescence microscopy for localization of Arabidopsis chloroplast proteins.
    Vitha S; Osteryoung KW
    Methods Mol Biol; 2011; 774():33-58. PubMed ID: 21822831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.