These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 19397897)
1. Ascorbic acid conversion to erythroascorbic acid, mediated by ubiquitin. Wang L; Narasaki R; Kitano Y; Hasumi K Biochem Biophys Res Commun; 2009 Jun; 384(2):210-4. PubMed ID: 19397897 [TBL] [Abstract][Full Text] [Related]
2. Microbial conversion of L-ascorbic acid to L-erythroascorbic acid. Kyotani D; Hasegawa K; Ohishi H; Wu W; Wang L; Hasumi K Biosci Biotechnol Biochem; 2009 Apr; 73(4):954-6. PubMed ID: 19352023 [TBL] [Abstract][Full Text] [Related]
3. NAD+-specific D-arabinose dehydrogenase and its contribution to erythroascorbic acid production in Saccharomyces cerevisiae. Amako K; Fujita K; Shimohata TA; Hasegawa E; Kishimoto R; Goda K FEBS Lett; 2006 Nov; 580(27):6428-34. PubMed ID: 17097644 [TBL] [Abstract][Full Text] [Related]
4. Conversion of D-arabinose to D-erythroascorbic acid and oxalic acid in Sclerotinia sclerotiorum. Loewus FA; Saito K; Suto RK; Maring E Biochem Biophys Res Commun; 1995 Jul; 212(1):196-203. PubMed ID: 7612007 [TBL] [Abstract][Full Text] [Related]
5. Functional ubiquitin conjugates with lysine-epsilon-amino-specific linkage by thioether ligation of cysteinyl-ubiquitin peptide building blocks. Jung JE; Wollscheid HP; Marquardt A; Manea M; Scheffner M; Przybylski M Bioconjug Chem; 2009 Jun; 20(6):1152-62. PubMed ID: 19469549 [TBL] [Abstract][Full Text] [Related]
6. NADP(+)-dependent D-arabinose dehydrogenase shows a limited contribution to erythroascorbic acid biosynthesis and oxidative stress resistance in Saccharomyces cerevisiae. Amako K; Fujita K; Iwamoto C; Sengee M; Fuchigami K; Fukumoto J; Ogishi Y; Kishimoto R; Goda K Biosci Biotechnol Biochem; 2006 Dec; 70(12):3004-12. PubMed ID: 17151466 [TBL] [Abstract][Full Text] [Related]
7. Ubiquitin and ubiquitin-derived peptides as substrates for peptidylglycine alpha-amidating monooxygenase. Chew GH; Galloway LC; McIntyre NR; Schroder LA; Richards KM; Miller SA; Wright DW; Merkler DJ FEBS Lett; 2005 Aug; 579(21):4678-84. PubMed ID: 16098968 [TBL] [Abstract][Full Text] [Related]
8. Bioavailability of 2-O-alpha-D-glucopyranosyl-L-ascorbic acid as ascorbic acid in healthy humans. Nakamura S; Oku T Nutrition; 2009 Jun; 25(6):686-91. PubMed ID: 19230615 [TBL] [Abstract][Full Text] [Related]
9. N-epsilon-acetylation of porcine mature erythrocytes ubiquitin. Zhu DX; Xu LX; Zhu NZ; Briand G; Han KK Int J Biochem; 1985; 17(6):719-21. PubMed ID: 2993057 [TBL] [Abstract][Full Text] [Related]
10. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. Yoshikawa A; Sato Y; Yamashita M; Mimura H; Yamagata A; Fukai S FEBS Lett; 2009 Oct; 583(20):3317-22. PubMed ID: 19766637 [TBL] [Abstract][Full Text] [Related]
12. L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development. Imai T; Ban Y; Terakami S; Yamamoto T; Moriguchi T Physiol Plant; 2009 Jun; 136(2):139-49. PubMed ID: 19453508 [TBL] [Abstract][Full Text] [Related]
13. Activities of D- and L-xyloascorbic acid and D- and L-araboascorbic acid as a cofactor for dopamine beta-hydroxylase reaction. Suzuki E; Kurata T; Shibata M; Mori M; Arakawa N J Nutr Sci Vitaminol (Tokyo); 1997 Oct; 43(5):491-6. PubMed ID: 9505234 [TBL] [Abstract][Full Text] [Related]
14. DARPin-assisted crystallography of the CC2-LZ domain of NEMO reveals a coupling between dimerization and ubiquitin binding. Grubisha O; Kaminska M; Duquerroy S; Fontan E; Cordier F; Haouz A; Raynal B; Chiaravalli J; Delepierre M; Israël A; Véron M; Agou F J Mol Biol; 2010 Jan; 395(1):89-104. PubMed ID: 19854204 [TBL] [Abstract][Full Text] [Related]
15. [Determination of hydrolysis constants for the conversion of dehydro-L(+)ascorbic acid into 2.3-dioxogulonic acid by means of the ESR method]. von Foerster G; Weis W; Staudinger H Hoppe Seylers Z Physiol Chem; 1967 Feb; 348(2):236-8. PubMed ID: 6033883 [No Abstract] [Full Text] [Related]
16. Biological synthesis of ascorbic acid: the conversion of derivatives of D-galacturonic acid into L-ascorbic acid by plant extracts. MAPSON LW; ISHERWOOD FA Biochem J; 1954 Dec; 59(335th Meeting):ix-x. PubMed ID: 14351207 [No Abstract] [Full Text] [Related]
17. Analysis of membrane protein complexes using the split-ubiquitin membrane yeast two-hybrid (MYTH) system. Kittanakom S; Chuk M; Wong V; Snyder J; Edmonds D; Lydakis A; Zhang Z; Auerbach D; Stagljar I Methods Mol Biol; 2009; 548():247-71. PubMed ID: 19521829 [TBL] [Abstract][Full Text] [Related]
18. Polysaccharide binding sites in hyaluronate lyase--crystal structures of native phage-encoded hyaluronate lyase and its complexes with ascorbic acid and lactose. Mishra P; Prem Kumar R; Ethayathulla AS; Singh N; Sharma S; Perbandt M; Betzel C; Kaur P; Srinivasan A; Bhakuni V; Singh TP FEBS J; 2009 Jun; 276(12):3392-402. PubMed ID: 19438710 [TBL] [Abstract][Full Text] [Related]
19. 60th residues of ubiquitin and Nedd8 are located out of E2-binding surfaces, but are important for K48 ubiquitin-linkage. Choi YS; Jeon YH; Ryu KS; Cheong C FEBS Lett; 2009 Oct; 583(20):3323-8. PubMed ID: 19782077 [TBL] [Abstract][Full Text] [Related]
20. Enzymatic Production of Ascorbic Acid-2-Phosphate by Engineered Song W; Zheng K; Xu X; Gao C; Guo L; Liu J; Chen X; Liu L; Hu G; Wu J J Agric Food Chem; 2021 Dec; 69(47):14215-14221. PubMed ID: 34786944 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]