These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. A key role for tetrahydrobiopterin-dependent endothelial NOS regulation in resistance arteries: studies in endothelial cell tetrahydrobiopterin-deficient mice. Chuaiphichai S; Crabtree MJ; Mcneill E; Hale AB; Trelfa L; Channon KM; Douglas G Br J Pharmacol; 2017 Apr; 174(8):657-671. PubMed ID: 28128438 [TBL] [Abstract][Full Text] [Related]
10. Presence of excess tetrahydrobiopterin during nitric oxide production from inducible nitric oxide synthase in LPS-treated rat aorta. Shimizu S; Ishii M; Kawakami Y; Kiuchi Y; Momose K; Yamamoto T Life Sci; 1999; 65(26):2769-79. PubMed ID: 10622266 [TBL] [Abstract][Full Text] [Related]
11. Effect of decreased levels of intrinsic tetrahydrobiopterin on endothelial function in anesthetized rats. Hamadate N; Noguchi K; Sakanashi M; Matsuzaki T; Nakasone J; Sakanashi M J Pharmacol Sci; 2008 May; 107(1):49-56. PubMed ID: 18446004 [TBL] [Abstract][Full Text] [Related]
12. Increasing tetrahydrobiopterin in cardiomyocytes adversely affects cardiac redox state and mitochondrial function independently of changes in NO production. Sethumadhavan S; Whitsett J; Bennett B; Ionova IA; Pieper GM; Vasquez-Vivar J Free Radic Biol Med; 2016 Apr; 93():1-11. PubMed ID: 26826575 [TBL] [Abstract][Full Text] [Related]
13. Cell-autonomous role of endothelial GTP cyclohydrolase 1 and tetrahydrobiopterin in blood pressure regulation. Chuaiphichai S; McNeill E; Douglas G; Crabtree MJ; Bendall JK; Hale AB; Alp NJ; Channon KM Hypertension; 2014 Sep; 64(3):530-40. PubMed ID: 24777984 [TBL] [Abstract][Full Text] [Related]
14. Endothelium-specific GTP cyclohydrolase I overexpression attenuates blood pressure progression in salt-sensitive low-renin hypertension. Du YH; Guan YY; Alp NJ; Channon KM; Chen AF Circulation; 2008 Feb; 117(8):1045-54. PubMed ID: 18268143 [TBL] [Abstract][Full Text] [Related]
15. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. Crabtree MJ; Tatham AL; Hale AB; Alp NJ; Channon KM J Biol Chem; 2009 Oct; 284(41):28128-28136. PubMed ID: 19666465 [TBL] [Abstract][Full Text] [Related]
16. Induction of tetrahydrobiopterin synthesis in rat cardiac myocytes: impact on cytokine-induced NO generation. Kasai K; Hattori Y; Banba N; Hattori S; Motohashi S; Shimoda S; Nakanishi N; Gross SS Am J Physiol; 1997 Aug; 273(2 Pt 2):H665-72. PubMed ID: 9277482 [TBL] [Abstract][Full Text] [Related]
17. Effect of 2,4-diamino-6-hydroxy-pyrimidine on postburn Staphylococcus aureus sepsis in rats. Li HY; Yao YM; Shi ZG; Dong N; Yu Y; Lu LR; Sheng ZY Crit Care Med; 2002 Nov; 30(11):2520-7. PubMed ID: 12441764 [TBL] [Abstract][Full Text] [Related]
18. Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Shimizu S; Shiota K; Yamamoto S; Miyasaka Y; Ishii M; Watabe T; Nishida M; Mori Y; Yamamoto T; Kiuchi Y Free Radic Biol Med; 2003 May; 34(10):1343-52. PubMed ID: 12726922 [TBL] [Abstract][Full Text] [Related]
19. Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure. Wang S; Xu J; Song P; Wu Y; Zhang J; Chul Choi H; Zou MH Hypertension; 2008 Sep; 52(3):484-90. PubMed ID: 18645049 [TBL] [Abstract][Full Text] [Related]