These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19398837)

  • 1. [Bone fracture and the healing mechanisms. Fragility fracture and bone quality].
    Mawatari T; Iwamoto Y
    Clin Calcium; 2009 May; 19(5):691-8. PubMed ID: 19398837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Bone fracture and the healing mechanisms. Pathophysiology and classification of osteoporotic fractures].
    Kishimoto H
    Clin Calcium; 2009 May; 19(5):619-25. PubMed ID: 19398827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bone fracture and the healing mechanisms. Microdamage and Microfracture].
    Mori S
    Clin Calcium; 2009 May; 19(5):699-703. PubMed ID: 19398838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone microdamage and skeletal fragility in osteoporotic and stress fractures.
    Burr DB; Forwood MR; Fyhrie DP; Martin RB; Schaffler MB; Turner CH
    J Bone Miner Res; 1997 Jan; 12(1):6-15. PubMed ID: 9240720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pathologic bone fractures: definition and classification].
    Adler CP
    Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir; 1989; ():479-86. PubMed ID: 2577585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of a CT data-based score for prediction of fracture risk in osteoporosis].
    Andresen R; Radmer S; Banzer D
    Aktuelle Radiol; 1997 Sep; 7(5):264-9. PubMed ID: 9410000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Morphological analysis of bone dynamics and metabolic bone disease. Pathophisiology of Microdamage].
    Mori S
    Clin Calcium; 2011 Apr; 21(4):559-65. PubMed ID: 21447923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures.
    Benhamou CL; Poupon S; Lespessailles E; Loiseau S; Jennane R; Siroux V; Ohley W; Pothuaud L
    J Bone Miner Res; 2001 Apr; 16(4):697-704. PubMed ID: 11315997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing stress fractures from pathologic fractures: a multimodality approach.
    Fayad LM; Kamel IR; Kawamoto S; Bluemke DA; Frassica FJ; Fishman EK
    Skeletal Radiol; 2005 May; 34(5):245-59. PubMed ID: 15838703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced imaging of bone macrostructure and microstructure in bone fragility and fracture repair.
    Kalpakcioglu BB; Morshed S; Engelke K; Genant HK
    J Bone Joint Surg Am; 2008 Feb; 90 Suppl 1():68-78. PubMed ID: 18292360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential pathogenic mechanism for stress fractures of the bowed femoral shaft in the elderly: Mechanical analysis by the CT-based finite element method.
    Oh Y; Wakabayashi Y; Kurosa Y; Fujita K; Okawa A
    Injury; 2014 Nov; 45(11):1764-71. PubMed ID: 25225173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of fatigue induced damage on the longitudinal fracture resistance of cortical bone.
    Fletcher L; Codrington J; Parkinson I
    J Mater Sci Mater Med; 2014 Jul; 25(7):1661-70. PubMed ID: 24715332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non destructive characterization of cortical bone micro-damage by nonlinear resonant ultrasound spectroscopy.
    Haupert S; Guérard S; Peyrin F; Mitton D; Laugier P
    PLoS One; 2014; 9(1):e83599. PubMed ID: 24392089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue fracture of the distal femur arising in the elderly.
    Sasaki D; Hatori M; Kotajima S; Kokubun S
    Arch Orthop Trauma Surg; 2005 Jul; 125(6):422-5. PubMed ID: 16034645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related changes in trabecular bone microdamage initiation.
    Nagaraja S; Lin AS; Guldberg RE
    Bone; 2007 Apr; 40(4):973-80. PubMed ID: 17175210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural consequences of endosteal metastatic lesions in long bones.
    Hipp JA; McBroom RJ; Cheal EJ; Hayes WC
    J Orthop Res; 1989; 7(6):828-37. PubMed ID: 2795323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of torsional failure in 22 cadaver femora with and without simulated subtrochanteric metastatic defects: a CT scan-based finite element analysis.
    Spruijt S; van der Linden JC; Dijkstra PD; Wiggers T; Oudkerk M; Snijders CJ; van Keulen F; Verhaar JA; Weinans H; Swierstra BA
    Acta Orthop; 2006 Jun; 77(3):474-81. PubMed ID: 16819688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting microdamage in bone.
    Lee TC; Mohsin S; Taylor D; Parkesh R; Gunnlaugsson T; O'Brien FJ; Giehl M; Gowin W
    J Anat; 2003 Aug; 203(2):161-72. PubMed ID: 12924817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdamage detection and repair in bone: fracture mechanics, histology, cell biology.
    Hazenberg JG; Hentunen TA; Heino TJ; Kurata K; Lee TC; Taylor D
    Technol Health Care; 2009; 17(1):67-75. PubMed ID: 19478407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone Mineralization and Fracture Risk Assessment in the Pediatric Population.
    Wasserman H; Gordon CM
    J Clin Densitom; 2017; 20(3):389-396. PubMed ID: 28729046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.