These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 19399129)
1. Compressing surface plasmons for nano-scale optical focusing. Choi H; Pile DF; Nam S; Bartal G; Zhang X Opt Express; 2009 Apr; 17(9):7519-24. PubMed ID: 19399129 [TBL] [Abstract][Full Text] [Related]
2. Nanofocusing of surface plasmon polaritons by a pyramidal structure on an aperture. Tanaka K; Katayama K; Tanaka M Opt Express; 2010 Jan; 18(2):787-98. PubMed ID: 20173901 [TBL] [Abstract][Full Text] [Related]
3. Effect of surface plasmon cross-talk on optical properties of closely packed nano-hole arrays. Vasefi F; Najiminaini M; Kaminska B; Carson JJ Opt Express; 2011 Dec; 19(25):25773-9. PubMed ID: 22273969 [TBL] [Abstract][Full Text] [Related]
4. Effect of subwavelength annular aperture diameter on the nondiffracting region of generated Bessel beams. Yu YY; Lin DZ; Huang LS; Lee CK Opt Express; 2009 Feb; 17(4):2707-13. PubMed ID: 19219175 [TBL] [Abstract][Full Text] [Related]
5. Propagation characteristics of silver and tungsten subwavelength annular aperture generated sub-micron non-diffraction beams. Cheng TD; Lin DZ; Yeh JT; Liu JM; Yeh CS; Lee CK Opt Express; 2009 Mar; 17(7):5330-9. PubMed ID: 19333298 [TBL] [Abstract][Full Text] [Related]
6. Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field. Chen XW; Sandoghdar V; Agio M Opt Express; 2010 May; 18(10):10878-87. PubMed ID: 20588943 [TBL] [Abstract][Full Text] [Related]
7. Efficient sub-wavelength light confinement using surface plasmon polaritons in tapered fibers. Renna F; Cox D; Brambilla G Opt Express; 2009 Apr; 17(9):7658-63. PubMed ID: 19399144 [TBL] [Abstract][Full Text] [Related]
11. Obstructive micro diffracting structures as an alternative to plasmonics nano slits for making efficient microlenses. Vitrant G; Zaiba S; Vineeth BY; Kouriba T; Ziane O; Stéphan O; Bosson J; Baldeck PL Opt Express; 2012 Nov; 20(24):26542-7. PubMed ID: 23187509 [TBL] [Abstract][Full Text] [Related]
12. Optical nanofocusing by tapering coupled photonic-plasmonic waveguides. He X; Yang L; Yang T Opt Express; 2011 Jul; 19(14):12865-72. PubMed ID: 21747437 [TBL] [Abstract][Full Text] [Related]
13. Superlens nano-patterning technology based on the distributed polystyrene spheres. Li S; Du C; Dong X; Shi L; Luo X; Wei X; Zhang Y Opt Express; 2008 Sep; 16(19):14397-403. PubMed ID: 18794975 [TBL] [Abstract][Full Text] [Related]
14. Plasmonic Luneburg and Eaton lenses. Zentgraf T; Liu Y; Mikkelsen MH; Valentine J; Zhang X Nat Nanotechnol; 2011 Mar; 6(3):151-5. PubMed ID: 21258334 [TBL] [Abstract][Full Text] [Related]
18. Transmission of surface plasmon polaritons through a nanowire array: mechano-optical modulation and motion sensing. Fedyanin DY; Arsenin AV Opt Express; 2010 Sep; 18(19):20115-24. PubMed ID: 20940902 [TBL] [Abstract][Full Text] [Related]
19. Surface plasmon microcavity for resonant transmission through a slit in a gold film. Min Q; Gordon R Opt Express; 2008 Jun; 16(13):9708-13. PubMed ID: 18575539 [TBL] [Abstract][Full Text] [Related]
20. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles. Zhu J; Xue M; Hoekstra R; Xiu F; Zeng B; Wang KL Nanoscale; 2012 Mar; 4(6):1978-81. PubMed ID: 22354350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]