These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19399761)

  • 1. Evaluation of the searching abilities of HBOP and HBSITE for binding pocket detection.
    Oda A; Yamaotsu N; Hirono S
    J Comput Chem; 2009 Dec; 30(16):2728-37. PubMed ID: 19399761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites.
    Laurie AT; Jackson RM
    Bioinformatics; 2005 May; 21(9):1908-16. PubMed ID: 15701681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale comparison of four binding site detection algorithms.
    Schmidtke P; Souaille C; Estienne F; Baurin N; Kroemer RT
    J Chem Inf Model; 2010 Dec; 50(12):2191-200. PubMed ID: 20828173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SuperStar: improved knowledge-based interaction fields for protein binding sites.
    Verdonk ML; Cole JC; Watson P; Gillet V; Willett P
    J Mol Biol; 2001 Mar; 307(3):841-59. PubMed ID: 11273705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of multiscale pockets on protein surfaces using mathematical morphology.
    Kawabata T
    Proteins; 2010 Apr; 78(5):1195-211. PubMed ID: 19938154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of pockets on protein surfaces using small and large probe spheres to find putative ligand binding sites.
    Kawabata T; Go N
    Proteins; 2007 Aug; 68(2):516-29. PubMed ID: 17444522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for localizing ligand binding pockets in protein structures.
    Glaser F; Morris RJ; Najmanovich RJ; Laskowski RA; Thornton JM
    Proteins; 2006 Feb; 62(2):479-88. PubMed ID: 16304646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development and validation of programs for ligand-binding-pocket search].
    Oda A
    Yakugaku Zasshi; 2011; 131(10):1429-35. PubMed ID: 21963969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and refinement of model protein-ligand complexes.
    Orry AJ; Abagyan R
    Methods Mol Biol; 2012; 857():351-73. PubMed ID: 22323230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MetaPocket: a meta approach to improve protein ligand binding site prediction.
    Huang B
    OMICS; 2009 Aug; 13(4):325-30. PubMed ID: 19645590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of protein functional surfaces by the concept of a split pocket.
    Tseng YY; Li WH
    Proteins; 2009 Sep; 76(4):959-76. PubMed ID: 19326458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new test set for validating predictions of protein-ligand interaction.
    Nissink JW; Murray C; Hartshorn M; Verdonk ML; Cole JC; Taylor R
    Proteins; 2002 Dec; 49(4):457-71. PubMed ID: 12402356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ProMate: a structure based prediction program to identify the location of protein-protein binding sites.
    Neuvirth H; Raz R; Schreiber G
    J Mol Biol; 2004 Apr; 338(1):181-99. PubMed ID: 15050833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-organizing fuzzy graphs for structure-based comparison of protein pockets.
    Reisen F; Weisel M; Kriegl JM; Schneider G
    J Proteome Res; 2010 Dec; 9(12):6498-510. PubMed ID: 20883038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Form follows function: shape analysis of protein cavities for receptor-based drug design.
    Weisel M; Proschak E; Kriegl JM; Schneider G
    Proteomics; 2009 Jan; 9(2):451-9. PubMed ID: 19142949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons.
    Morris RJ; Najmanovich RJ; Kahraman A; Thornton JM
    Bioinformatics; 2005 May; 21(10):2347-55. PubMed ID: 15728116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DOCKGROUND system of databases for protein recognition studies: unbound structures for docking.
    Gao Y; Douguet D; Tovchigrechko A; Vakser IA
    Proteins; 2007 Dec; 69(4):845-51. PubMed ID: 17803215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information theory-based scoring function for the structure-based prediction of protein-ligand binding affinity.
    Kulharia M; Goody RS; Jackson RM
    J Chem Inf Model; 2008 Oct; 48(10):1990-8. PubMed ID: 18767831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting small ligand binding sites in proteins using backbone structure.
    Bordner AJ
    Bioinformatics; 2008 Dec; 24(24):2865-71. PubMed ID: 18940825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.