These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 19399851)
81. Insecticidal plant cyclotides and related cystine knot toxins. Gruber CW; Cemazar M; Anderson MA; Craik DJ Toxicon; 2007 Mar; 49(4):561-75. PubMed ID: 17224167 [TBL] [Abstract][Full Text] [Related]
82. Two-dimensional electrophoresis based proteomic analysis of the pea (Pisum sativum) in response to Mycosphaerella pinodes. Castillejo MÁ; Curto M; Fondevilla S; Rubiales D; Jorrín JV J Agric Food Chem; 2010 Dec; 58(24):12822-32. PubMed ID: 21090568 [TBL] [Abstract][Full Text] [Related]
83. Novel inhibitor cystine knot peptides from Momordica charantia. He WJ; Chan LY; Clark RJ; Tang J; Zeng GZ; Franco OL; Cantacessi C; Craik DJ; Daly NL; Tan NH PLoS One; 2013; 8(10):e75334. PubMed ID: 24116036 [TBL] [Abstract][Full Text] [Related]
84. Sativin: a novel antifungal miraculin-like protein isolated from legumes of the sugar snap Pisum sativum var. macrocarpon. Ye XY; Wang HX; Ng TB Life Sci; 2000 Jul; 67(7):775-81. PubMed ID: 10968407 [TBL] [Abstract][Full Text] [Related]
85. Conformational Dynamics of a Cysteine-Stabilized Plant Defensin Reveals an Evolutionary Mechanism to Expose Hydrophobic Residues. Machado LESF; De Paula VS; Pustovalova Y; Bezsonova I; Valente AP; Korzhnev DM; Almeida FCL Biochemistry; 2018 Oct; 57(40):5797-5806. PubMed ID: 30207151 [TBL] [Abstract][Full Text] [Related]
86. Interrogating and predicting tolerated sequence diversity in protein folds: application to E. elaterium trypsin inhibitor-II cystine-knot miniprotein. Lahti JL; Silverman AP; Cochran JR PLoS Comput Biol; 2009 Sep; 5(9):e1000499. PubMed ID: 19730675 [TBL] [Abstract][Full Text] [Related]
87. Evaluation of the membrane lipid selectivity of the pea defensin Psd1. Gonçalves S; Teixeira A; Abade J; de Medeiros LN; Kurtenbach E; Santos NC Biochim Biophys Acta; 2012 May; 1818(5):1420-6. PubMed ID: 22373959 [TBL] [Abstract][Full Text] [Related]
88. Chemical synthesis and characterization of maurotoxin, a short scorpion toxin with four disulfide bridges that acts on K+ channels. Kharrat R; Mabrouk K; Crest M; Darbon H; Oughideni R; Martin-Eauclaire MF; Jacquet G; el Ayeb M; Van Rietschoten J; Rochat H; Sabatier JM Eur J Biochem; 1996 Dec; 242(3):491-8. PubMed ID: 9022673 [TBL] [Abstract][Full Text] [Related]
89. Impact of temperature and water activity on the aroma composition and flavor stability of pea ( Mehle H; Paravisini L; Peterson DG Food Funct; 2020 Sep; 11(9):8309-8319. PubMed ID: 32909587 [TBL] [Abstract][Full Text] [Related]
90. Porphobilinogen synthase from pea: expression from an artificial gene, kinetic characterization, and novel implications for subunit interactions. Kervinen J; Dunbrack RL; Litwin S; Martins J; Scarrow RC; Volin M; Yeung AT; Yoon E; Jaffe EK Biochemistry; 2000 Aug; 39(30):9018-29. PubMed ID: 10913315 [TBL] [Abstract][Full Text] [Related]
91. The three isoforms of the light-harvesting complex II: spectroscopic features, trimer formation, and functional roles. Standfuss J; Kühlbrandt W J Biol Chem; 2004 Aug; 279(35):36884-91. PubMed ID: 15208324 [TBL] [Abstract][Full Text] [Related]
92. A quantitative in silico analysis calculates the angiotensin I converting enzyme (ACE) inhibitory activity in pea and whey protein digests. Vermeirssen V; van der Bent A; Van Camp J; van Amerongen A; Verstraete W Biochimie; 2004 Mar; 86(3):231-9. PubMed ID: 15134838 [TBL] [Abstract][Full Text] [Related]
93. Handling a tricycle: orthogonal versus random oxidation of the tricyclic inhibitor cystine knotted peptide gurmarin. Eliasen R; Andresen TL; Conde-Frieboes KW Peptides; 2012 Sep; 37(1):144-9. PubMed ID: 22771618 [TBL] [Abstract][Full Text] [Related]
94. Characterization of proanthocyanidin metabolism in pea (Pisum sativum) seeds. Ferraro K; Jin AL; Nguyen TD; Reinecke DM; Ozga JA; Ro DK BMC Plant Biol; 2014 Sep; 14():238. PubMed ID: 25928382 [TBL] [Abstract][Full Text] [Related]
95. Identification of dietary and endogenous ileal protein losses in pigs by immunoblotting and mass spectrometry. Le Gall M; Quillien L; Guéguen J; Rogniaux H; Sève B J Nutr; 2005 May; 135(5):1215-22. PubMed ID: 15867306 [TBL] [Abstract][Full Text] [Related]
96. The attack of the phytopathogens and the trumpet solo: Identification of a novel plant antifungal peptide with distinct fold and disulfide bond pattern. Mandal SM; Porto WF; Dey P; Maiti MK; Ghosh AK; Franco OL Biochimie; 2013 Oct; 95(10):1939-48. PubMed ID: 23835303 [TBL] [Abstract][Full Text] [Related]
97. Peptides from Pisum sativum L. enzymatic protein digest with anti-adhesive activity against Helicobacter pylori: structure-activity and inhibitory activity against BabA, SabA, HpaA and a fibronectin-binding adhesin. Niehues M; Euler M; Georgi G; Mank M; Stahl B; Hensel A Mol Nutr Food Res; 2010 Dec; 54(12):1851-61. PubMed ID: 20540145 [TBL] [Abstract][Full Text] [Related]
98. Fabrication of hydrophilic composites by bridging the secondary structures between rice proteins and pea proteins toward enhanced nutritional properties. Wang R; Li L; Feng W; Wang T Food Funct; 2020 Sep; 11(9):7446-7455. PubMed ID: 32808004 [TBL] [Abstract][Full Text] [Related]
99. Interfacial structural role of pH-shifting processed pea protein in the oxidative stability of oil/water emulsions. Jiang J; Zhu B; Liu Y; Xiong YL J Agric Food Chem; 2014 Feb; 62(7):1683-91. PubMed ID: 24460504 [TBL] [Abstract][Full Text] [Related]
100. Protein Oxidation in Plant Protein-Based Fibrous Products: Effects of Encapsulated Iron and Process Conditions. Estrada PD; Berton-Carabin CC; Schlangen M; Haagsma A; Pierucci APTR; van der Goot AJ J Agric Food Chem; 2018 Oct; 66(42):11105-11112. PubMed ID: 30256634 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]